
The value of \[\dfrac{d}{{dx}}\left( {{x^x}} \right)\] is equal to:
A. \[{x^x}\log \left( {\dfrac{e}{x}} \right)\]
B. \[{x^x}\log ex\]
C. \[{x^x}\left( {1 + \log x} \right)\]
D. \[{x^x}\log x\]
Answer
598.5k+ views
Hint: First of all, apply logarithm to the function to obtain a simple equation. Then use the product rule of derivatives to find the derivative of the given function. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Let \[y = {x^x}\]
Applying logarithms on both sides, we get
\[ \Rightarrow \log y = \log {x^x}\]
We know that \[\log {a^b} = b\log a\]
\[ \Rightarrow \log y = x\log x\]
Differentiating on both sides w.r.t \[x\], we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {x\log x} \right)\]
By product rule of derivatives, we have
\[
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = x\dfrac{d}{{dx}}\left( {\log x} \right) + \log x\dfrac{d}{{dx}}\left( x \right) \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = x \times \dfrac{1}{x} + \log x \times 1 \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = 1 + \log x \\
\Rightarrow \dfrac{{dy}}{{dx}} = y\left( {1 + \log x} \right) \\
\therefore \dfrac{{dy}}{{dx}} = {x^x}\left( {1 + \log x} \right){\text{ }}\left[ {\because y = {x^x}} \right] \\
\]
Therefore, the derivative of \[{x^x}\] is \[{x^x}\left( {1 + \log x} \right)\].
Thus, the correct option is C. \[{x^x}\left( {1 + \log x} \right)\].
Note: The product rule states that if \[f\left( x \right)\] and \[g\left( x \right)\] are both differentiable, then \[\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] + g\left( x \right)\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right]\]. Remember the derivative of \[{x^x}\] as a formula which will be useful to solve higher derivative problems.
Complete step-by-step answer:
Let \[y = {x^x}\]
Applying logarithms on both sides, we get
\[ \Rightarrow \log y = \log {x^x}\]
We know that \[\log {a^b} = b\log a\]
\[ \Rightarrow \log y = x\log x\]
Differentiating on both sides w.r.t \[x\], we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {x\log x} \right)\]
By product rule of derivatives, we have
\[
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = x\dfrac{d}{{dx}}\left( {\log x} \right) + \log x\dfrac{d}{{dx}}\left( x \right) \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = x \times \dfrac{1}{x} + \log x \times 1 \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = 1 + \log x \\
\Rightarrow \dfrac{{dy}}{{dx}} = y\left( {1 + \log x} \right) \\
\therefore \dfrac{{dy}}{{dx}} = {x^x}\left( {1 + \log x} \right){\text{ }}\left[ {\because y = {x^x}} \right] \\
\]
Therefore, the derivative of \[{x^x}\] is \[{x^x}\left( {1 + \log x} \right)\].
Thus, the correct option is C. \[{x^x}\left( {1 + \log x} \right)\].
Note: The product rule states that if \[f\left( x \right)\] and \[g\left( x \right)\] are both differentiable, then \[\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] + g\left( x \right)\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right]\]. Remember the derivative of \[{x^x}\] as a formula which will be useful to solve higher derivative problems.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

