
The value of \[\dfrac{{(5050)\int_0^1 {(1 - {x^{50}}} {)^{100}}dx}}{{\int_0^1 {{{(1 - {x^{50}})}^{101}}dx} }}\]is,
A. 5040
B. 5051
C. 5050
D. None of these
Answer
590.4k+ views
Hint: We try to generalize this problem in our way to solve it easily. We start with \[{I_{n + 1}}\]and \[{I_n}\]in general as terms, \[{I_n} = \int_0^1 {{{(1 - {x^m})}^n}} dx\]. And similarly, we’ll get the value of \[{I_{n + 1}}\] . So on comparing the term with the term given the question we’ll substitute the value of n to get the required answer.
Complete step by step Answer:
Given: \[\dfrac{{(5050)\int_0^1 {(1 - {x^{50}}} {)^{100}}dx}}{{\int_0^1 {{{(1 - {x^{50}})}^{101}}dx} }}\], we need to find its value.
Let, \[{I_n} = \int_0^1 {{{(1 - {x^m})}^n}} dx\]
Substituting n=n+1
Now, breaking the exponent as${a^{x + y}} = {a^x}{a^y}$
\[ = \int_0^1 {{{(1 - {x^m})}^n}(1 - {x^m})} dx\]
On multiplying we get,
\[ = \int_0^1 {[{{(1 - {x^m})}^n} - {x^m}{{(1 - {x^m})}^n}} ]dx\]
As we know that$\int {(A + B)dx} = \int {Adx} + \int {Bdx} $
\[ = \int_0^1 {{{(1 - {x^m})}^n}dx - \int_0^1 {{x^m}{{(1 - {x^m})}^n}} } dx\]
Now, from \[\int_0^1 {{{(1 - {x^m})}^n}} dx = {I_n}\],
\[ = {I_n} - \int_0^1 {{x^m}{{(1 - {x^m})}^n}dx} \]
\[ = {I_n} - \int_0^1 {x.} {x^{m - 1}}{(1 - {x^m})^n}dx\]
By integrating by parts,
i.e. $\int {f(x)g(x)dx} = f(x)\int {g(x)dx} - \int {(f'(x)\int {g(x)dx} )dx + c} $
\[ = {I_n} - [\left. { - \dfrac{{x{{(1 - {x^m})}^{n + 1}}}}{{m(n + 1)}}} \right|_0^1 + \int_0^1 {\dfrac{{{{(1 - {x^m})}^{n + 1}}}}{{m(n + 1)}}dx]} \]
\[ = {I_n} + [\dfrac{{1{{(1 - {1^m})}^{n + 1}} - 0{{(1 - {0^m})}^{n + 1}}}}{{m(n + 1)}} - \dfrac{1}{{m(n + 1)}}\int_0^1 {{{(1 - {x^m})}^{n + 1}}dx]} \]
Our first term turns out to be zero and the 2nd term is \[ = {I_{n + 1}}\]
Now, we have,
\[{I_{n + 1}} = {I_n} - \dfrac{1}{{m(n + 1)}}{I_{n + 1}}\]
On changing sides, we get,
\[{I_{n + 1}} + \dfrac{1}{{m(n + 1)}}{I_{n + 1}} = {I_n}\]
\[ \Rightarrow \dfrac{{{I_{n + 1}}[m(n + 1) + 1]}}{{m(n + 1)}} = {I_n}\]
On cross multiplying, we get,
\[ \Rightarrow {I_{n + 1}}[m(n + 1) + 1] = {I_n}m(n + 1)\]
Now, in our problem, \[{\text{n = 100,m = 50}}\]
So we get,
\[{I_{100 + 1}}[50(100 + 1) + 1] = {I_{100}}50(100 + 1)\]
\[ \Rightarrow {I_{101}}[50(101) + 1] = {I_{100}}50(101)\]
\[ \Rightarrow [50(101) + 1] = \dfrac{{{I_{100}}5050}}{{{I_{101}}}}\]
\[ \Rightarrow \dfrac{{{I_{100}}5050}}{{{I_{101}}}} = 5051\]
So, we have our answer as, 5051, which is an option (b)
Note: Here to solve the problem we have used some formulas of integration. We calculated \[{I_{n + 1}}\] to find the form \[{I_n}\]to reach our answer.\[{I_{n + 1}}\]is found by the same formula \[{I_n}\], we can also proceed with the problem with \[{I_n}\]and \[{I_{n - 1}}\] if we consider it \[n = 101\].
Here we have found that if \[{I_n} = \int_0^1 {{{(1 - {x^m})}^n}} dx\] then \[{I_{n + 1}}[m(n + 1) + 1] = {I_n}m(n + 1)\]. Therefore, we found the generalized term for this type of question to easily simplify to get the required answers.
Complete step by step Answer:
Given: \[\dfrac{{(5050)\int_0^1 {(1 - {x^{50}}} {)^{100}}dx}}{{\int_0^1 {{{(1 - {x^{50}})}^{101}}dx} }}\], we need to find its value.
Let, \[{I_n} = \int_0^1 {{{(1 - {x^m})}^n}} dx\]
Substituting n=n+1
Now, breaking the exponent as${a^{x + y}} = {a^x}{a^y}$
\[ = \int_0^1 {{{(1 - {x^m})}^n}(1 - {x^m})} dx\]
On multiplying we get,
\[ = \int_0^1 {[{{(1 - {x^m})}^n} - {x^m}{{(1 - {x^m})}^n}} ]dx\]
As we know that$\int {(A + B)dx} = \int {Adx} + \int {Bdx} $
\[ = \int_0^1 {{{(1 - {x^m})}^n}dx - \int_0^1 {{x^m}{{(1 - {x^m})}^n}} } dx\]
Now, from \[\int_0^1 {{{(1 - {x^m})}^n}} dx = {I_n}\],
\[ = {I_n} - \int_0^1 {{x^m}{{(1 - {x^m})}^n}dx} \]
\[ = {I_n} - \int_0^1 {x.} {x^{m - 1}}{(1 - {x^m})^n}dx\]
By integrating by parts,
i.e. $\int {f(x)g(x)dx} = f(x)\int {g(x)dx} - \int {(f'(x)\int {g(x)dx} )dx + c} $
\[ = {I_n} - [\left. { - \dfrac{{x{{(1 - {x^m})}^{n + 1}}}}{{m(n + 1)}}} \right|_0^1 + \int_0^1 {\dfrac{{{{(1 - {x^m})}^{n + 1}}}}{{m(n + 1)}}dx]} \]
\[ = {I_n} + [\dfrac{{1{{(1 - {1^m})}^{n + 1}} - 0{{(1 - {0^m})}^{n + 1}}}}{{m(n + 1)}} - \dfrac{1}{{m(n + 1)}}\int_0^1 {{{(1 - {x^m})}^{n + 1}}dx]} \]
Our first term turns out to be zero and the 2nd term is \[ = {I_{n + 1}}\]
Now, we have,
\[{I_{n + 1}} = {I_n} - \dfrac{1}{{m(n + 1)}}{I_{n + 1}}\]
On changing sides, we get,
\[{I_{n + 1}} + \dfrac{1}{{m(n + 1)}}{I_{n + 1}} = {I_n}\]
\[ \Rightarrow \dfrac{{{I_{n + 1}}[m(n + 1) + 1]}}{{m(n + 1)}} = {I_n}\]
On cross multiplying, we get,
\[ \Rightarrow {I_{n + 1}}[m(n + 1) + 1] = {I_n}m(n + 1)\]
Now, in our problem, \[{\text{n = 100,m = 50}}\]
So we get,
\[{I_{100 + 1}}[50(100 + 1) + 1] = {I_{100}}50(100 + 1)\]
\[ \Rightarrow {I_{101}}[50(101) + 1] = {I_{100}}50(101)\]
\[ \Rightarrow [50(101) + 1] = \dfrac{{{I_{100}}5050}}{{{I_{101}}}}\]
\[ \Rightarrow \dfrac{{{I_{100}}5050}}{{{I_{101}}}} = 5051\]
So, we have our answer as, 5051, which is an option (b)
Note: Here to solve the problem we have used some formulas of integration. We calculated \[{I_{n + 1}}\] to find the form \[{I_n}\]to reach our answer.\[{I_{n + 1}}\]is found by the same formula \[{I_n}\], we can also proceed with the problem with \[{I_n}\]and \[{I_{n - 1}}\] if we consider it \[n = 101\].
Here we have found that if \[{I_n} = \int_0^1 {{{(1 - {x^m})}^n}} dx\] then \[{I_{n + 1}}[m(n + 1) + 1] = {I_n}m(n + 1)\]. Therefore, we found the generalized term for this type of question to easily simplify to get the required answers.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

