
The value of \[cos({12^ \circ }) + cos({84^ \circ }) + cos({156^ \circ }) + cos({132^ \circ })\] is ___________.
Answer
512.1k+ views
Hint: : Here we are only given the trigonometric function cosine, denoted as \[cos()\]. When we wish to calculate the sum of multiple trigonometric functions we must find a way to group them. We will do rough calculations in our mind to find out the best groupings in such a way that we are able to use direct trigonometric values to solve.
Formulas used:
$\cos x + \cos y = 2\cos (\dfrac{{x + y}}{2})\cos (\dfrac{{x - y}}{2})$
$\cos ( - x) = \cos x$
$\cos (x) = \sin (90 - x)$
$\cos (90 + x) = - \sin (x)$
$\cos ({36^ \circ }) = \dfrac{{(\sqrt 5 + 1)}}{4}$
$\sin ({18^ \circ }) = \dfrac{{(\sqrt 5 - 1)}}{4}$
Complete step-by-step answer:
From the question we see that all the functions that are being operated upon are cosines. This decreases our confusion in choosing the right formula, because when multiple cosine functions are added, we generally use the formula:
$\cos x + \cos y = 2\cos (\dfrac{{x + y}}{2})\cos (\dfrac{{x - y}}{2})$, to find the answer.
Clearly this formula can only be used for two cosine functions at a time, but in the question we are given four different cosine functions so we need to group them in pairs (in two) to be able to use this formula.
Now grouping must be done carefully, because it determines the ease to solve the problem. If we group between some terms, it can be difficult to reach the final answer.
From the question \[cos({12^ \circ }) + cos({84^ \circ }) + cos({156^ \circ }) + cos({132^ \circ })\] take a look at:
\[cos({12^ \circ }),cos({132^ \circ })\] and \[cos({156^ \circ }),cos({84^ \circ })\]
These pairs look like the best option to be clubbed together.
Now moving on to solving the given operation, given question is:
\[ \Rightarrow cos({12^ \circ }) + cos({84^ \circ }) + cos({156^ \circ }) + cos({132^ \circ })\]
Grouping in pairs;
\[ = [cos({12^ \circ }) + cos({132^ \circ })] + [cos({156^ \circ }) + cos({84^ \circ })]\]
Applying the formula of $(\cos x + \cos y)$ for each pair;
\[ = \left[ {2 \times \cos \dfrac{{{{(12 + 132)}^ \circ }}}{2}\cos \dfrac{{{{(12 - 132)}^ \circ }}}{2}} \right] + \left[ {2 \times \cos \dfrac{{{{(156 + 84)}^ \circ }}}{2}\cos \dfrac{{{{(156 - 84)}^ \circ }}}{2}} \right]\]
Now simplifying the fractions, we get;
\[ = \left[ {2 \times \cos ({{72}^ \circ })\cos ( - {{60}^ \circ })} \right] + \left[ {2 \times \cos ({{120}^ \circ })\cos ({{36}^ \circ })} \right]\]
Here we see that one of the angles: $\cos ( - 60)$, but by the formula $\cos ( - x) = \cos x$, we can rewrite the previous simplification as;
\[ = \left[ {2 \times \cos ({{72}^ \circ })\cos ({{60}^ \circ })} \right] + \left[ {2 \times \cos ({{120}^ \circ })\cos ({{36}^ \circ })} \right]\; \to (i)\]
We do not know the direct value of $\cos (72{}^ \circ )$, so let us change it in terms of sine function:
$\cos (72{}^ \circ ) = \sin ({(90 - 72)^ \circ })$
$ \Rightarrow \cos (72{}^ \circ ) = \sin ({18^ \circ })$
Also we do not have a direct value for $\cos ({120^ \circ })$, so it will be:
$\cos ({120^ \circ }) = \cos ({(90 + 30)^ \circ })$
$ \Rightarrow \cos ({120^ \circ }) = - \sin ({30^ \circ })$
Now we move on to substitute $\sin ({18^ \circ }), - \sin ({30^ \circ })$ in place of $\cos (72{}^ \circ )$ and $\cos (120{}^ \circ )$ respectively in equation $(i)$;
\[ = \left[ {2 \times \sin ({{18}^ \circ })\cos ({{60}^ \circ })} \right] + \left[ {2 \times - \sin ({{30}^ \circ })\cos ({{36}^ \circ })} \right]\]
Then putting the values
$\sin ({18^ \circ }) = \dfrac{{(\sqrt 5 - 1)}}{4}$, $\cos ({36^ \circ }) = \dfrac{{(\sqrt 5 + 1)}}{4}$, $\cos ({60^ \circ }) = \dfrac{1}{2}$ and $ - \sin ({30^ \circ }) = - \dfrac{1}{2}$ into the equation;
\[ \Rightarrow cos({12^ \circ }) + cos({84^ \circ }) + cos({156^ \circ }) + cos({132^ \circ }) = \left[ {2 \times \dfrac{{(\sqrt 5 - 1)}}{4} \times \dfrac{1}{2}} \right] + \left[ {2 \times - \dfrac{1}{2} \times \dfrac{{(\sqrt 5 + 1)}}{4}} \right]\]
Simplifying gives us;
\[ \Rightarrow cos({12^ \circ }) + cos({84^ \circ }) + cos({156^ \circ }) + cos({132^ \circ }) = \left[ {\dfrac{{(\sqrt 5 - 1)}}{4}} \right] + \left[ { - \dfrac{{(\sqrt 5 + 1)}}{4}} \right]\]
Therefore the final value for the given question is:
\[cos({12^ \circ }) + cos({84^ \circ }) + cos({156^ \circ }) + cos({132^ \circ }) = - \dfrac{1}{2}\]
So, the correct answer is \[- \dfrac{1}{2}\]”.
Note: Grouping terms while solving operations between trigonometric functions can be tricky. When we group functions, we need to group them in a way we can apply the direct and familiar trigonometric values to arrive at the final answer. Once we practice multiple questions of the similar kind, we will know which groups can give the easiest solution.
Formulas used:
$\cos x + \cos y = 2\cos (\dfrac{{x + y}}{2})\cos (\dfrac{{x - y}}{2})$
$\cos ( - x) = \cos x$
$\cos (x) = \sin (90 - x)$
$\cos (90 + x) = - \sin (x)$
$\cos ({36^ \circ }) = \dfrac{{(\sqrt 5 + 1)}}{4}$
$\sin ({18^ \circ }) = \dfrac{{(\sqrt 5 - 1)}}{4}$
Complete step-by-step answer:
From the question we see that all the functions that are being operated upon are cosines. This decreases our confusion in choosing the right formula, because when multiple cosine functions are added, we generally use the formula:
$\cos x + \cos y = 2\cos (\dfrac{{x + y}}{2})\cos (\dfrac{{x - y}}{2})$, to find the answer.
Clearly this formula can only be used for two cosine functions at a time, but in the question we are given four different cosine functions so we need to group them in pairs (in two) to be able to use this formula.
Now grouping must be done carefully, because it determines the ease to solve the problem. If we group between some terms, it can be difficult to reach the final answer.
From the question \[cos({12^ \circ }) + cos({84^ \circ }) + cos({156^ \circ }) + cos({132^ \circ })\] take a look at:
\[cos({12^ \circ }),cos({132^ \circ })\] and \[cos({156^ \circ }),cos({84^ \circ })\]
These pairs look like the best option to be clubbed together.
Now moving on to solving the given operation, given question is:
\[ \Rightarrow cos({12^ \circ }) + cos({84^ \circ }) + cos({156^ \circ }) + cos({132^ \circ })\]
Grouping in pairs;
\[ = [cos({12^ \circ }) + cos({132^ \circ })] + [cos({156^ \circ }) + cos({84^ \circ })]\]
Applying the formula of $(\cos x + \cos y)$ for each pair;
\[ = \left[ {2 \times \cos \dfrac{{{{(12 + 132)}^ \circ }}}{2}\cos \dfrac{{{{(12 - 132)}^ \circ }}}{2}} \right] + \left[ {2 \times \cos \dfrac{{{{(156 + 84)}^ \circ }}}{2}\cos \dfrac{{{{(156 - 84)}^ \circ }}}{2}} \right]\]
Now simplifying the fractions, we get;
\[ = \left[ {2 \times \cos ({{72}^ \circ })\cos ( - {{60}^ \circ })} \right] + \left[ {2 \times \cos ({{120}^ \circ })\cos ({{36}^ \circ })} \right]\]
Here we see that one of the angles: $\cos ( - 60)$, but by the formula $\cos ( - x) = \cos x$, we can rewrite the previous simplification as;
\[ = \left[ {2 \times \cos ({{72}^ \circ })\cos ({{60}^ \circ })} \right] + \left[ {2 \times \cos ({{120}^ \circ })\cos ({{36}^ \circ })} \right]\; \to (i)\]
We do not know the direct value of $\cos (72{}^ \circ )$, so let us change it in terms of sine function:
$\cos (72{}^ \circ ) = \sin ({(90 - 72)^ \circ })$
$ \Rightarrow \cos (72{}^ \circ ) = \sin ({18^ \circ })$
Also we do not have a direct value for $\cos ({120^ \circ })$, so it will be:
$\cos ({120^ \circ }) = \cos ({(90 + 30)^ \circ })$
$ \Rightarrow \cos ({120^ \circ }) = - \sin ({30^ \circ })$
Now we move on to substitute $\sin ({18^ \circ }), - \sin ({30^ \circ })$ in place of $\cos (72{}^ \circ )$ and $\cos (120{}^ \circ )$ respectively in equation $(i)$;
\[ = \left[ {2 \times \sin ({{18}^ \circ })\cos ({{60}^ \circ })} \right] + \left[ {2 \times - \sin ({{30}^ \circ })\cos ({{36}^ \circ })} \right]\]
Then putting the values
$\sin ({18^ \circ }) = \dfrac{{(\sqrt 5 - 1)}}{4}$, $\cos ({36^ \circ }) = \dfrac{{(\sqrt 5 + 1)}}{4}$, $\cos ({60^ \circ }) = \dfrac{1}{2}$ and $ - \sin ({30^ \circ }) = - \dfrac{1}{2}$ into the equation;
\[ \Rightarrow cos({12^ \circ }) + cos({84^ \circ }) + cos({156^ \circ }) + cos({132^ \circ }) = \left[ {2 \times \dfrac{{(\sqrt 5 - 1)}}{4} \times \dfrac{1}{2}} \right] + \left[ {2 \times - \dfrac{1}{2} \times \dfrac{{(\sqrt 5 + 1)}}{4}} \right]\]
Simplifying gives us;
\[ \Rightarrow cos({12^ \circ }) + cos({84^ \circ }) + cos({156^ \circ }) + cos({132^ \circ }) = \left[ {\dfrac{{(\sqrt 5 - 1)}}{4}} \right] + \left[ { - \dfrac{{(\sqrt 5 + 1)}}{4}} \right]\]
Therefore the final value for the given question is:
\[cos({12^ \circ }) + cos({84^ \circ }) + cos({156^ \circ }) + cos({132^ \circ }) = - \dfrac{1}{2}\]
So, the correct answer is \[- \dfrac{1}{2}\]”.
Note: Grouping terms while solving operations between trigonometric functions can be tricky. When we group functions, we need to group them in a way we can apply the direct and familiar trigonometric values to arrive at the final answer. Once we practice multiple questions of the similar kind, we will know which groups can give the easiest solution.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

