
The value of $ \cos y\cos \left( {\dfrac{\pi }{2} - x} \right) - \cos \left( {\dfrac{\pi }{2} - y} \right)\cos x + \sin y\cos \left( {\dfrac{\pi }{2} - x} \right) + \cos x\sin \left( {\dfrac{\pi }{2} - y} \right) $ is zero if
(A) $ x = 0 $
(B) $ y = 0 $
(C) $ x = y $
(D) $ x = n\pi - \dfrac{\pi }{4} + y,n \in I $
Answer
409.5k+ views
Hint: In the given question, we are provided with the value of an expression involving trigonometric functions. So, we have to find the value of x and y. The given question deals with basic simplification of trigonometric functions by using some of the simple trigonometric formulae such as $ \cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x $ and $ \sin \left( {\dfrac{\pi }{2} - y} \right) = \cos y $ . Basic algebraic rules and trigonometric identities are to be kept in mind while doing simplification in the given problem.
Complete step-by-step answer:
In the given problem, we are given that,
$ \cos y\cos \left( {\dfrac{\pi }{2} - x} \right) - \cos \left( {\dfrac{\pi }{2} - y} \right)\cos x + \sin y\cos \left( {\dfrac{\pi }{2} - x} \right) + \cos x\sin \left( {\dfrac{\pi }{2} - y} \right) = 0 $
Now, we know that sine and cosine trigonometric functions are complementary functions. So, we use the trigonometric formulae $ \cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x $ and $ \sin \left( {\dfrac{\pi }{2} - y} \right) = \cos y $ in the given expression. So, we get,
$ \Rightarrow \cos y\sin x - \sin y\cos x + \sin y\sin x + \cos x\cos y = 0 $
Now, we group the trigonometric terms in a systematic order. So, we get,
$ \Rightarrow \left( {\sin x\cos y - \cos x\sin y} \right) + \left( {\cos x\cos y + \sin y\sin x} \right) = 0 $
Now, we know the compound angle formulae for sine and cosine trigonometric functions. So, we use the trigonometric formulae $ \sin x\cos y - \cos x\sin y = \sin \left( {x - y} \right) $ and $ \cos x\cos y + \sin y\sin x = \cos \left( {x - y} \right) $ . So, we get,
$ \Rightarrow \sin \left( {x - y} \right) + \cos \left( {x - y} \right) = 0 $
Now, we shift the terms in the equation and find the value of the tangent of the angle. So, we get,
$ \Rightarrow \sin \left( {x - y} \right) = - \cos \left( {x - y} \right) $
$ \Rightarrow \dfrac{{\sin \left( {x - y} \right)}}{{\cos \left( {x - y} \right)}} = - 1 $
$ \Rightarrow \tan \left( {x - y} \right) = - 1 $
$ \Rightarrow \tan \left( {x - y} \right) = \tan \left( { - \dfrac{\pi }{4}} \right) $
So, we get the equation in $ \tan \left( A \right) = \tan \left( B \right) $ form. So, the general solution of this equation is of the form $ A = n\pi + B $ , where n is any integer.
So, we have, $ \tan \left( {x - y} \right) = \tan \left( { - \dfrac{\pi }{4}} \right) $ .
Hence, $ x - y = n\pi + \left( { - \dfrac{\pi }{4}} \right) $ , where n is an integer.
So, we get the value of x as $ x = n\pi + \left( { - \dfrac{\pi }{4}} \right) + y,n \in I $
Hence, option (D) is the correct answer.
So, the correct answer is “Option D”.
Note: Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart such as: $ \sin \left( {\dfrac{\pi }{2} - y} \right) = \cos y $ and $ \tan (x) = \dfrac{{\sin (x)}}{{\cos (x)}} $ . Besides these simple trigonometric formulae, we should remember the formats of general trigonometric solutions such as $ \tan \left( A \right) = \tan \left( B \right) $ . Take care while doing the calculations so as to be sure of the final answer.
Complete step-by-step answer:
In the given problem, we are given that,
$ \cos y\cos \left( {\dfrac{\pi }{2} - x} \right) - \cos \left( {\dfrac{\pi }{2} - y} \right)\cos x + \sin y\cos \left( {\dfrac{\pi }{2} - x} \right) + \cos x\sin \left( {\dfrac{\pi }{2} - y} \right) = 0 $
Now, we know that sine and cosine trigonometric functions are complementary functions. So, we use the trigonometric formulae $ \cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x $ and $ \sin \left( {\dfrac{\pi }{2} - y} \right) = \cos y $ in the given expression. So, we get,
$ \Rightarrow \cos y\sin x - \sin y\cos x + \sin y\sin x + \cos x\cos y = 0 $
Now, we group the trigonometric terms in a systematic order. So, we get,
$ \Rightarrow \left( {\sin x\cos y - \cos x\sin y} \right) + \left( {\cos x\cos y + \sin y\sin x} \right) = 0 $
Now, we know the compound angle formulae for sine and cosine trigonometric functions. So, we use the trigonometric formulae $ \sin x\cos y - \cos x\sin y = \sin \left( {x - y} \right) $ and $ \cos x\cos y + \sin y\sin x = \cos \left( {x - y} \right) $ . So, we get,
$ \Rightarrow \sin \left( {x - y} \right) + \cos \left( {x - y} \right) = 0 $
Now, we shift the terms in the equation and find the value of the tangent of the angle. So, we get,
$ \Rightarrow \sin \left( {x - y} \right) = - \cos \left( {x - y} \right) $
$ \Rightarrow \dfrac{{\sin \left( {x - y} \right)}}{{\cos \left( {x - y} \right)}} = - 1 $
$ \Rightarrow \tan \left( {x - y} \right) = - 1 $
$ \Rightarrow \tan \left( {x - y} \right) = \tan \left( { - \dfrac{\pi }{4}} \right) $
So, we get the equation in $ \tan \left( A \right) = \tan \left( B \right) $ form. So, the general solution of this equation is of the form $ A = n\pi + B $ , where n is any integer.
So, we have, $ \tan \left( {x - y} \right) = \tan \left( { - \dfrac{\pi }{4}} \right) $ .
Hence, $ x - y = n\pi + \left( { - \dfrac{\pi }{4}} \right) $ , where n is an integer.
So, we get the value of x as $ x = n\pi + \left( { - \dfrac{\pi }{4}} \right) + y,n \in I $
Hence, option (D) is the correct answer.
So, the correct answer is “Option D”.
Note: Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart such as: $ \sin \left( {\dfrac{\pi }{2} - y} \right) = \cos y $ and $ \tan (x) = \dfrac{{\sin (x)}}{{\cos (x)}} $ . Besides these simple trigonometric formulae, we should remember the formats of general trigonometric solutions such as $ \tan \left( A \right) = \tan \left( B \right) $ . Take care while doing the calculations so as to be sure of the final answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
