
The value of $\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right)$ is equal to:
A. $\dfrac{{\sqrt 3 }}{5}$
B. $\dfrac{5}{3}$
C. $\dfrac{5}{{\sqrt 3 }}$
D. $\sqrt {\dfrac{5}{3}} $
E. $\dfrac{{\sqrt 5 }}{3}$
Answer
611.1k+ views
Hint: Use the information, ${\sin ^{ - 1}}x = {\cos ^{ - 1}}\sqrt {1 - {x^2}} $. Convert in same, inverse-trigonometric ratios.
Complete step-by-step answer:
We have given that, $\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right)$. We know that, ${\sin ^{ - 1}}x = {\cos ^{ - 1}}\sqrt {1 - {x^2}} $. Using this identity, we get, $\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) \Rightarrow \cos \left( {{{\cos }^{ - 1}}\sqrt {1 - {{\left( {\dfrac{2}{3}} \right)}^2}} } \right)$.
On further solving it we get,
\[
\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) \\
\Rightarrow \cos \left( {{{\cos }^{ - 1}}\sqrt {1 - {{\left( {\dfrac{2}{3}} \right)}^2}} } \right) \\
\Rightarrow \cos \left( {{{\cos }^{ - 1}}\sqrt {1 - \dfrac{4}{9}} } \right) \\
\Rightarrow \cos \left( {{{\cos }^{ - 1}}\sqrt {\dfrac{5}{9}} } \right) \\
\Rightarrow \sqrt {\dfrac{5}{9}} \\
\Rightarrow \dfrac{{\sqrt 5 }}{3} \\
\]
Hence the correct option is E.
Note: In inverse trigonometric problems, identities and formulas are the key. Our first approach should be, which formula we have to apply in order to simplify the equation. When you get the correct formula, half of the question is finished there itself.
Complete step-by-step answer:
We have given that, $\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right)$. We know that, ${\sin ^{ - 1}}x = {\cos ^{ - 1}}\sqrt {1 - {x^2}} $. Using this identity, we get, $\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) \Rightarrow \cos \left( {{{\cos }^{ - 1}}\sqrt {1 - {{\left( {\dfrac{2}{3}} \right)}^2}} } \right)$.
On further solving it we get,
\[
\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) \\
\Rightarrow \cos \left( {{{\cos }^{ - 1}}\sqrt {1 - {{\left( {\dfrac{2}{3}} \right)}^2}} } \right) \\
\Rightarrow \cos \left( {{{\cos }^{ - 1}}\sqrt {1 - \dfrac{4}{9}} } \right) \\
\Rightarrow \cos \left( {{{\cos }^{ - 1}}\sqrt {\dfrac{5}{9}} } \right) \\
\Rightarrow \sqrt {\dfrac{5}{9}} \\
\Rightarrow \dfrac{{\sqrt 5 }}{3} \\
\]
Hence the correct option is E.
Note: In inverse trigonometric problems, identities and formulas are the key. Our first approach should be, which formula we have to apply in order to simplify the equation. When you get the correct formula, half of the question is finished there itself.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

