
The value of c in the Lagrange’s mean value theorem for the function $f(x)={{x}^{3}}-4{{x}^{2}}+8x+11$ , where $x\in [0,1]$ is:
(a) $\dfrac{\sqrt{7}-2}{3}$
(b) $\dfrac{4-\sqrt{7}}{3}$
(c) $\dfrac{2}{3}$
(d) $\dfrac{4-\sqrt{5}}{3}$
Answer
582.6k+ views
Hint: Use the conditions of Lagrange’s Theorem according to which if a function f is continuous in the interval [a,b] and is differentiable in the interval (a,b) then there exists at least one c lying in the interval (a,b) such that $f'\left( c \right)=\dfrac{f(b)-f(a)}{b-a}$ . Also, the function given to us is a polynomial and polynomials are continuous and differentiable for all real values of x, so just find the differential of the function and put x=c in it and equate it with the value you get using $f'\left( c \right)=\dfrac{f(b)-f(a)}{b-a}$ .
Complete step-by-step answer:
Before starting with the solution, let us discuss Lagrange’s Theorem. The theorem states that if a function f is continuous in the interval [a,b] and is differentiable in the interval (a,b) then there exists at least one c lying in the interval (a,b) such that $f'\left( c \right)=\dfrac{f(b)-f(a)}{b-a}$ .
Now starting with the solution. The function given to us is $f(x)={{x}^{3}}-4{{x}^{2}}+8x+11$ in the interval [0,1] and it is a polynomial and we know that polynomials are continuous and differentiable for all real values of x. Therefore, we can say that:
$f'\left( c \right)=\dfrac{f(1)-f(0)}{1-0}............(i)$
Now we know $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$ , so, we can say:
$f'(x)=3{{x}^{2}}-8x+8$
Now we will put x=c. On doing so, we get
$f'(c)=3{{c}^{2}}-8c+8$
Now, if we put this in equation (i), we get
$3{{c}^{2}}-8c+8=\dfrac{f(1)-f(0)}{1-0}$
Now we will use the definition of the function f. On doing so, we get
$3{{c}^{2}}-8c+8=\dfrac{{{1}^{3}}-4\times {{1}^{2}}+8\times 1+11-\left( {{0}^{3}}-4\times {{0}^{2}}+8\times 0+11 \right)}{1-0}$
$\Rightarrow 3{{c}^{2}}-8c+8=\dfrac{1-4+8+11-11}{1}$
$\Rightarrow 3{{c}^{2}}-8c+8=5$
$\Rightarrow 3{{c}^{2}}-8c+3=0$
Now, the final equation we got was a quadratic equation. So, we will use the quadratic formula to get its root.
$\therefore c=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}=\dfrac{-(-8)\pm \sqrt{{{\left( -8 \right)}^{2}}-4\times 3\times 3}}{2\times 3}=\dfrac{8\pm \sqrt{64-36}}{6}=\dfrac{8\pm \sqrt{28}}{6}$
But if we see $\dfrac{8+\sqrt{28}}{6}$ doesn’t lie in the rage (0,1), so the only possible value of c is $c=\dfrac{8-\sqrt{28}}{6}=\dfrac{2\left( 4-\sqrt{7} \right)}{6}=\dfrac{4-\sqrt{7}}{3}$
Therefore, the answer to the above question is option (b).
Note: While using Rolle’s Theorem and Lagrange’s mean value theorem, don’t forget to ensure that the function is differentiable and continuous in the given interval, as it is a necessary condition for this theorem to hold true. Also, don’t forget to make sure that the value of c is lying in the interval that you are using for these theorems.
Complete step-by-step answer:
Before starting with the solution, let us discuss Lagrange’s Theorem. The theorem states that if a function f is continuous in the interval [a,b] and is differentiable in the interval (a,b) then there exists at least one c lying in the interval (a,b) such that $f'\left( c \right)=\dfrac{f(b)-f(a)}{b-a}$ .
Now starting with the solution. The function given to us is $f(x)={{x}^{3}}-4{{x}^{2}}+8x+11$ in the interval [0,1] and it is a polynomial and we know that polynomials are continuous and differentiable for all real values of x. Therefore, we can say that:
$f'\left( c \right)=\dfrac{f(1)-f(0)}{1-0}............(i)$
Now we know $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$ , so, we can say:
$f'(x)=3{{x}^{2}}-8x+8$
Now we will put x=c. On doing so, we get
$f'(c)=3{{c}^{2}}-8c+8$
Now, if we put this in equation (i), we get
$3{{c}^{2}}-8c+8=\dfrac{f(1)-f(0)}{1-0}$
Now we will use the definition of the function f. On doing so, we get
$3{{c}^{2}}-8c+8=\dfrac{{{1}^{3}}-4\times {{1}^{2}}+8\times 1+11-\left( {{0}^{3}}-4\times {{0}^{2}}+8\times 0+11 \right)}{1-0}$
$\Rightarrow 3{{c}^{2}}-8c+8=\dfrac{1-4+8+11-11}{1}$
$\Rightarrow 3{{c}^{2}}-8c+8=5$
$\Rightarrow 3{{c}^{2}}-8c+3=0$
Now, the final equation we got was a quadratic equation. So, we will use the quadratic formula to get its root.
$\therefore c=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}=\dfrac{-(-8)\pm \sqrt{{{\left( -8 \right)}^{2}}-4\times 3\times 3}}{2\times 3}=\dfrac{8\pm \sqrt{64-36}}{6}=\dfrac{8\pm \sqrt{28}}{6}$
But if we see $\dfrac{8+\sqrt{28}}{6}$ doesn’t lie in the rage (0,1), so the only possible value of c is $c=\dfrac{8-\sqrt{28}}{6}=\dfrac{2\left( 4-\sqrt{7} \right)}{6}=\dfrac{4-\sqrt{7}}{3}$
Therefore, the answer to the above question is option (b).
Note: While using Rolle’s Theorem and Lagrange’s mean value theorem, don’t forget to ensure that the function is differentiable and continuous in the given interval, as it is a necessary condition for this theorem to hold true. Also, don’t forget to make sure that the value of c is lying in the interval that you are using for these theorems.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
December 10th of 1948 is an important day in the history class 12 sst CBSE

Prove that a parallelogram circumscribing a circle-class-12-maths-CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

