
The value of $c$ from the Lagrange’s mean value theorem for which $f(x) = \sqrt {25 - {x^2}} $ in $[1,5]$ is
A) $5$
B) $1$
C) $\sqrt {15} $
D) None of these
Answer
509.7k+ views
Hint: First of all we have to know what Lagrange's mean value theorem or LMVT. So, Lagrange’s mean value theorem or LMVT states that if a function $f(x)$ is continuous on a closed interval $[a,b]$ and differentiable on the open interval $\left( {a,b} \right)$, then there is at least one point $x = c$ on this interval, such that ,
$f'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{\left( {b - a} \right)}}$
We are going to use this formula to find the value of $c$ for the given function.
Complete step by step answer:
Given, $f(x) = \sqrt {25 - {x^2}} $ in the interval $[1,5]$.
So, in the f=given interval, we can clearly see that $f(x)$ is continuous.
So, our first condition for Lagrange’s mean value theorem stands true.
Now, on differentiating $f(x)$ with respect to $x$, we get,
$f'\left( x \right) = \dfrac{d}{{dx}}\left( {\sqrt {25 - {x^2}} } \right)$
$ \Rightarrow f'\left( x \right) = \dfrac{1}{{2\sqrt {25 - {x^2}} }}\dfrac{d}{{dx}}\left( { - {x^2}} \right)$
[Using chain rule]
$ \Rightarrow f'\left( x \right) = \dfrac{1}{{2\sqrt {25 - {x^2}} }}\left( { - 2x} \right)$
Now, by simplifying the equation, we get,
$ \Rightarrow f'\left( x \right) = \dfrac{{ - x}}{{\sqrt {25 - {x^2}} }}$
So, we can clearly observe that, $f'\left( x \right)$ is differentiable in $\left( {1,5} \right)$.
So, the second condition for Lagrange’s mean value theorem is also true.
Therefore, there must be a $c \in \left[ {1,5} \right]$ such that,
$f'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{\left( {b - a} \right)}}$
Here, $b = 5$ and $a = 1$.
So, $f'\left( c \right) = \dfrac{{f\left( 5 \right) - f\left( 1 \right)}}{{\left( {5 - 1} \right)}}$
Now, opening the functions, we get,
$ \Rightarrow f'\left( c \right) = \dfrac{{\left\{ {\sqrt {25 - {{\left( 5 \right)}^2}} } \right\} - \left\{ {\sqrt {25 - {{\left( 1 \right)}^2}} } \right\}}}{{\left( 4 \right)}}$
$ \Rightarrow f'\left( c \right) = \dfrac{{\left\{ {\sqrt {25 - 25} } \right\} - \left\{ {\sqrt {25 - 1} } \right\}}}{{\left( 4 \right)}}$
Simplifying the equation, we get,
$ \Rightarrow f'\left( c \right) = \dfrac{{0 - \left\{ {\sqrt {24} } \right\}}}{{\left( 4 \right)}}$
$ \Rightarrow f'\left( c \right) = \dfrac{{ - 2\sqrt 6 }}{4}$
$ \Rightarrow f'\left( c \right) = \dfrac{{ - \sqrt 6 }}{2}$
But, we know, $f'\left( x \right) = \dfrac{{ - x}}{{\sqrt {25 - {x^2}} }}$.
Therefore, $f'\left( c \right) = \dfrac{{ - c}}{{\sqrt {25 - {c^2}} }}$
So, $\dfrac{{ - c}}{{\sqrt {25 - {c^2}} }} = \dfrac{{ - \sqrt 6 }}{2}$
Now, squaring both sides, we get,
$ \Rightarrow \dfrac{{{c^2}}}{{25 - {c^2}}} = \dfrac{6}{4}$
Cross multiplying the above equation, we get,
$ \Rightarrow 4{c^2} = 6\left( {25 - {c^2}} \right)$
$ \Rightarrow 4{c^2} = 150 - 6{c^2}$
Adding $6{c^2}$ on both sides, we get,
$ \Rightarrow 10{c^2} = 150$
$ \Rightarrow {c^2} = 15$
Now, square rooting both sides, we get,
$ \Rightarrow c = \pm \sqrt {15} $
Therefore, $c = \sqrt {15} \in \left[ {1,5} \right]$. Hence, the correct option is (C).
Note:
There are many important applications of Lagrange’s mean value theorem. It plays an important role in the proof of Fundamental Theorem of Calculus. The generalisation of the Lagrange’s mean value theorem can be used to prove L’Hopital’s Rule. Mean value theorem is important in other areas of mathematics other than calculus and analysis, like applied mathematics and even number theory.
$f'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{\left( {b - a} \right)}}$
We are going to use this formula to find the value of $c$ for the given function.
Complete step by step answer:
Given, $f(x) = \sqrt {25 - {x^2}} $ in the interval $[1,5]$.
So, in the f=given interval, we can clearly see that $f(x)$ is continuous.
So, our first condition for Lagrange’s mean value theorem stands true.
Now, on differentiating $f(x)$ with respect to $x$, we get,
$f'\left( x \right) = \dfrac{d}{{dx}}\left( {\sqrt {25 - {x^2}} } \right)$
$ \Rightarrow f'\left( x \right) = \dfrac{1}{{2\sqrt {25 - {x^2}} }}\dfrac{d}{{dx}}\left( { - {x^2}} \right)$
[Using chain rule]
$ \Rightarrow f'\left( x \right) = \dfrac{1}{{2\sqrt {25 - {x^2}} }}\left( { - 2x} \right)$
Now, by simplifying the equation, we get,
$ \Rightarrow f'\left( x \right) = \dfrac{{ - x}}{{\sqrt {25 - {x^2}} }}$
So, we can clearly observe that, $f'\left( x \right)$ is differentiable in $\left( {1,5} \right)$.
So, the second condition for Lagrange’s mean value theorem is also true.
Therefore, there must be a $c \in \left[ {1,5} \right]$ such that,
$f'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{\left( {b - a} \right)}}$
Here, $b = 5$ and $a = 1$.
So, $f'\left( c \right) = \dfrac{{f\left( 5 \right) - f\left( 1 \right)}}{{\left( {5 - 1} \right)}}$
Now, opening the functions, we get,
$ \Rightarrow f'\left( c \right) = \dfrac{{\left\{ {\sqrt {25 - {{\left( 5 \right)}^2}} } \right\} - \left\{ {\sqrt {25 - {{\left( 1 \right)}^2}} } \right\}}}{{\left( 4 \right)}}$
$ \Rightarrow f'\left( c \right) = \dfrac{{\left\{ {\sqrt {25 - 25} } \right\} - \left\{ {\sqrt {25 - 1} } \right\}}}{{\left( 4 \right)}}$
Simplifying the equation, we get,
$ \Rightarrow f'\left( c \right) = \dfrac{{0 - \left\{ {\sqrt {24} } \right\}}}{{\left( 4 \right)}}$
$ \Rightarrow f'\left( c \right) = \dfrac{{ - 2\sqrt 6 }}{4}$
$ \Rightarrow f'\left( c \right) = \dfrac{{ - \sqrt 6 }}{2}$
But, we know, $f'\left( x \right) = \dfrac{{ - x}}{{\sqrt {25 - {x^2}} }}$.
Therefore, $f'\left( c \right) = \dfrac{{ - c}}{{\sqrt {25 - {c^2}} }}$
So, $\dfrac{{ - c}}{{\sqrt {25 - {c^2}} }} = \dfrac{{ - \sqrt 6 }}{2}$
Now, squaring both sides, we get,
$ \Rightarrow \dfrac{{{c^2}}}{{25 - {c^2}}} = \dfrac{6}{4}$
Cross multiplying the above equation, we get,
$ \Rightarrow 4{c^2} = 6\left( {25 - {c^2}} \right)$
$ \Rightarrow 4{c^2} = 150 - 6{c^2}$
Adding $6{c^2}$ on both sides, we get,
$ \Rightarrow 10{c^2} = 150$
$ \Rightarrow {c^2} = 15$
Now, square rooting both sides, we get,
$ \Rightarrow c = \pm \sqrt {15} $
Therefore, $c = \sqrt {15} \in \left[ {1,5} \right]$. Hence, the correct option is (C).
Note:
There are many important applications of Lagrange’s mean value theorem. It plays an important role in the proof of Fundamental Theorem of Calculus. The generalisation of the Lagrange’s mean value theorem can be used to prove L’Hopital’s Rule. Mean value theorem is important in other areas of mathematics other than calculus and analysis, like applied mathematics and even number theory.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

