
The value of \[(4{\cos ^2}{9^ \circ } - 1)(4{\cos ^2}{81^ \circ } - 1)(4{\cos ^2}{27^ \circ } - 1)(4{\cos ^2}{243^ \circ } - 1)\] is
A.1
B.-1
C.2
D.None of these
Answer
560.4k+ views
Hint: We have given \[(4{\cos ^2}{9^ \circ } - 1)(4{\cos ^2}{81^ \circ } - 1)(4{\cos ^2}{27^ \circ } - 1)(4{\cos ^2}{243^ \circ } - 1)\]
To find the value of above trigonometric expressions first, we have to use this trigonometric identity $(4{\cos ^2}\theta - 1)$
Complete step-by-step answer:
The trigonometric identity is $(4{\cos ^2}\theta - 1)$ =$\dfrac{{\sin 3\theta }}{{\sin \theta }}$
Here is the further explanation of this trigonometric identity or we can say the proof of this formula
In the first part, we use this identity where R.H.S. \[\dfrac{{\operatorname{Sin} 3\theta }}{{\sin \theta }} = \dfrac{{3\sin \theta - 4{{\sin }^3}\theta }}{{\sin \theta }}\]
In the next part, we take out the common part and it will cancel with the denominator
$ = \dfrac{{\sin \theta (3 - 4{{\sin }^2}\theta )}}{{\sin \theta }} = 3 - 4{\sin ^2}\theta $
So, In this area, we use another identity of trigonometry
$ = 3 - 4(1 - {\cos ^2}\theta )$ [∴ ${\sin ^2}\theta = 1 - {\cos ^2}\theta $]
So, here we open the brackets by multiply 4 with both digits
$ = 3 - 4 + 4{\cos ^2}\theta $
$
= - 1 + 4{\cos ^2}\theta \\
= 4{\cos ^2}\theta - 1 \\
$ = L.H.S.
$(4{\cos ^2}\theta - 1)$ =$\dfrac{{\sin 3\theta }}{{\sin \theta }}$
For $\theta = {9^ \circ }$
$4{\cos ^2}{9^ \circ } - 1 = \dfrac{{\sin 3 \times {9^ \circ }}}{{\sin {9^ \circ }}} = \dfrac{{\sin {{27}^ \circ }}}{{\sin {9^ \circ }}}.......(i)$
For $\theta = {27^ \circ }$
$4{\cos ^2}{27^ \circ } - 1 = \dfrac{{\sin 3 \times {{27}^ \circ }}}{{\sin {{27}^ \circ }}} = \dfrac{{\sin {{81}^ \circ }}}{{\sin {{27}^ \circ }}}.........(ii)$
$\theta = {81^ \circ }$
$4{\cos ^2}{81^ \circ } - 1 = \dfrac{{\sin 3 \times {{81}^ \circ }}}{{\sin {{81}^ \circ }}} = \dfrac{{\sin {{243}^ \circ }}}{{\sin {{81}^ \circ }}}.........(iii)$
$\theta = {243^ \circ }$
$4{\cos ^2}{243^ \circ } - 1 = \dfrac{{\sin 3 \times {{243}^ \circ }}}{{\sin {{243}^ \circ }}} = \dfrac{{\sin {{729}^ \circ }}}{{\sin {{243}^ \circ }}}.........(iv)$
Multiplying (i) (ii) (iii) and (iv)
\[(4{\cos ^2}{9^ \circ } - 1)(4{\cos ^2}{81^ \circ } - 1)(4{\cos ^2}{27^ \circ } - 1)(4{\cos ^2}{243^ \circ } - 1)\]
= \[\]\[
\dfrac{{\sin {{27}^ \circ }}}{{\sin {9^ \circ }}} \times \dfrac{{\sin {{81}^ \circ }}}{{\sin {{27}^ \circ }}} \times \dfrac{{\sin {{243}^ \circ }}}{{\sin {{81}^ \circ }}} \times \dfrac{{\sin {{729}^ \circ }}}{{\sin {{243}^ \circ }}} \\
= \dfrac{{\sin {{729}^ \circ }}}{{\sin {9^ \circ }}} = \dfrac{{\sin {{(720 + 9)}^ \circ }}}{{\sin {9^ \circ }}} = \dfrac{{\sin {9^ \circ }}}{{\sin {9^ \circ }}} = 1 \\
\] \[\because \sin (2\pi + \theta ) = \sin \theta \]
Option A is correct.
Note: Identities involving only angles are known as trigonometric identities , related both the sides and angles of a given triangle.
Periodic function: On changing a variable θ to θ +α. α being the least positive constant, the value of a function of θ remains unchanged, the function is said to be periodic and α is called the periodic function.
$\sin (\theta + 2\pi ) = \sin \theta $
To find the value of above trigonometric expressions first, we have to use this trigonometric identity $(4{\cos ^2}\theta - 1)$
Complete step-by-step answer:
The trigonometric identity is $(4{\cos ^2}\theta - 1)$ =$\dfrac{{\sin 3\theta }}{{\sin \theta }}$
Here is the further explanation of this trigonometric identity or we can say the proof of this formula
In the first part, we use this identity where R.H.S. \[\dfrac{{\operatorname{Sin} 3\theta }}{{\sin \theta }} = \dfrac{{3\sin \theta - 4{{\sin }^3}\theta }}{{\sin \theta }}\]
In the next part, we take out the common part and it will cancel with the denominator
$ = \dfrac{{\sin \theta (3 - 4{{\sin }^2}\theta )}}{{\sin \theta }} = 3 - 4{\sin ^2}\theta $
So, In this area, we use another identity of trigonometry
$ = 3 - 4(1 - {\cos ^2}\theta )$ [∴ ${\sin ^2}\theta = 1 - {\cos ^2}\theta $]
So, here we open the brackets by multiply 4 with both digits
$ = 3 - 4 + 4{\cos ^2}\theta $
$
= - 1 + 4{\cos ^2}\theta \\
= 4{\cos ^2}\theta - 1 \\
$ = L.H.S.
$(4{\cos ^2}\theta - 1)$ =$\dfrac{{\sin 3\theta }}{{\sin \theta }}$
For $\theta = {9^ \circ }$
$4{\cos ^2}{9^ \circ } - 1 = \dfrac{{\sin 3 \times {9^ \circ }}}{{\sin {9^ \circ }}} = \dfrac{{\sin {{27}^ \circ }}}{{\sin {9^ \circ }}}.......(i)$
For $\theta = {27^ \circ }$
$4{\cos ^2}{27^ \circ } - 1 = \dfrac{{\sin 3 \times {{27}^ \circ }}}{{\sin {{27}^ \circ }}} = \dfrac{{\sin {{81}^ \circ }}}{{\sin {{27}^ \circ }}}.........(ii)$
$\theta = {81^ \circ }$
$4{\cos ^2}{81^ \circ } - 1 = \dfrac{{\sin 3 \times {{81}^ \circ }}}{{\sin {{81}^ \circ }}} = \dfrac{{\sin {{243}^ \circ }}}{{\sin {{81}^ \circ }}}.........(iii)$
$\theta = {243^ \circ }$
$4{\cos ^2}{243^ \circ } - 1 = \dfrac{{\sin 3 \times {{243}^ \circ }}}{{\sin {{243}^ \circ }}} = \dfrac{{\sin {{729}^ \circ }}}{{\sin {{243}^ \circ }}}.........(iv)$
Multiplying (i) (ii) (iii) and (iv)
\[(4{\cos ^2}{9^ \circ } - 1)(4{\cos ^2}{81^ \circ } - 1)(4{\cos ^2}{27^ \circ } - 1)(4{\cos ^2}{243^ \circ } - 1)\]
= \[\]\[
\dfrac{{\sin {{27}^ \circ }}}{{\sin {9^ \circ }}} \times \dfrac{{\sin {{81}^ \circ }}}{{\sin {{27}^ \circ }}} \times \dfrac{{\sin {{243}^ \circ }}}{{\sin {{81}^ \circ }}} \times \dfrac{{\sin {{729}^ \circ }}}{{\sin {{243}^ \circ }}} \\
= \dfrac{{\sin {{729}^ \circ }}}{{\sin {9^ \circ }}} = \dfrac{{\sin {{(720 + 9)}^ \circ }}}{{\sin {9^ \circ }}} = \dfrac{{\sin {9^ \circ }}}{{\sin {9^ \circ }}} = 1 \\
\] \[\because \sin (2\pi + \theta ) = \sin \theta \]
Option A is correct.
Note: Identities involving only angles are known as trigonometric identities , related both the sides and angles of a given triangle.
Periodic function: On changing a variable θ to θ +α. α being the least positive constant, the value of a function of θ remains unchanged, the function is said to be periodic and α is called the periodic function.
$\sin (\theta + 2\pi ) = \sin \theta $
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

