
The value of $2\int {\sin x\cos ec4xdx} $ is equal to
A) $\dfrac{1}{{2\sqrt 2 }}\ln \left| {\dfrac{{1 + \sqrt 2 \sin x}}{{1 - \sqrt 2 \sin x}}} \right| - \dfrac{1}{4}\ln \left| {\dfrac{{1 + \sin x}}{{1 - \sin x}}} \right| + c$
B) $\dfrac{1}{{2\sqrt 2 }}\ln \left| {\dfrac{{1 + \sqrt 2 \sin x}}{{1 - \sqrt 2 \sin x}}} \right| - \dfrac{1}{2}\ln \left| {\dfrac{{1 + \sin x}}{{\cos x}}} \right| + c$
C) $\dfrac{1}{{2\sqrt 2 }}\ln \left| {\dfrac{{1 - \sqrt 2 \sin x}}{{1 + \sqrt 2 \sin x}}} \right| - \dfrac{1}{4}\ln \left| {\dfrac{{1 + \sin x}}{{1 - \sin x}}} \right| + c$
D) $\dfrac{1}{{2\sqrt 2 }}\ln \left| {\dfrac{{1 - \sqrt 2 \sin x}}{{1 + \sqrt 2 \sin x}}} \right| + \dfrac{1}{2}\ln \left| {\dfrac{{1 + \sin x}}{{\cos x}}} \right| + c$
Answer
507.9k+ views
Hint:
We will first write cosec x in terms of sin x and after that we will expand the term using trigonometric identity: sin 2x = 2 sin x cos x. We will use another trigonometric identity:
$\cos 2x=1-2\sin ^{2}x$ afterwards. Using the identity $\cos ^{2}x=1-\sin ^{2}x$, we will simplify it further. Now, we will put sin x = t and hence, cos x dx = dt. We will solve it further for the terms to reduce in some known form of integral function. We will use the formula of integrals as:
$\int {\dfrac{{dx}}{{\left( {{a^2} - {x^2}} \right)}} = \dfrac{1}{{2a}}\ln \left| {\dfrac{{a + x}}{{a - x}}} \right|} $+c and then we will find the required value of the given integral.
Complete step by step solution:
We are given an integral: $2\int {\sin x\cos ec4xdx} $.
Let us first convert cosec x in to sin x using the formula: cosec x = $\dfrac{1}{{\sin x}}$.
We can write the given integral as:
$ \Rightarrow 2\int {\dfrac{{\sin x}}{{\sin 4x}}dx} $
Now, expanding sin 4x using the trigonometric identity: sin 2x = 2 sin x cos x, here x = 2x.
$ \Rightarrow 2\int {\dfrac{{\sin x}}{{2\sin 2x\cos 2x}}dx} $
Again, simplifying the denominator using the trigonometric identity: sin 2x = 2 sin x cos x, here x = x.
$ \Rightarrow 2\int {\dfrac{{\sin x}}{{4\sin x\cos x\cos 2x}}dx} $
Using the trigonometric identity: $\cos 2x=1-2\sin ^{2}x$, we get
$
\Rightarrow \dfrac{1}{2}\int {\dfrac{1}{{\cos x\cos 2x}}dx} \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{1}{{\cos x\left( {1 - 2{{\sin }^2}x} \right)}}dx} \\
$
Multiplying and dividing by cos x, we get
$ \Rightarrow \dfrac{1}{2}\int {\dfrac{{\cos x}}{{{{\cos }^2}x\left( {1 - 2{{\sin }^2}x} \right)}}dx} $
Using the trigonometric identity: $\cos ^{2}x=1-\sin ^{2}x$, we get
$ \Rightarrow \dfrac{1}{2}\int {\dfrac{{\cos x}}{{\left( {1 - {{\sin }^2}x} \right)\left( {1 - 2{{\sin }^2}x} \right)}}dx} $
Now, put the value of sin x = t and hence on differentiating both sides, we get cos x dx = dt. Substituting these values in the integral obtained above, we get
$ \Rightarrow \dfrac{1}{2}\int {\dfrac{1}{{\left( {1 - {t^2}} \right)\left( {1 - 2{t^2}} \right)}}} dt$
We can write the numerator $1=2\left( 1-t^2 \right)-\left(1-2t^2 \right)$. Putting this value in the numerator, we get
$ \Rightarrow \dfrac{1}{2}\int {\dfrac{{2\left( {1 - {t^2}} \right) - \left( {1 - 2{t^2}} \right)}}{{\left( {1 - {t^2}} \right)\left( {1 - 2{t^2}} \right)}}} dt$
We can separate the integral as:
$ \Rightarrow \dfrac{1}{2}\int {\dfrac{{2\left( {1 - {t^2}} \right)}}{{\left( {1 - {t^2}} \right)\left( {1 - 2{t^2}} \right)}}} dt - \dfrac{1}{2}\int {\dfrac{{\left( {1 - 2{t^2}} \right)}}{{\left( {1 - {t^2}} \right)\left( {1 - 2{t^2}} \right)}}} dt$
$ \Rightarrow \dfrac{1}{2}\int {\dfrac{2}{{\left( {1 - 2{t^2}} \right)}}} dt - \dfrac{1}{2}\int {\dfrac{1}{{\left( {1 - {t^2}} \right)}}} dt$
Now, using the integral formula: $\int {\dfrac{{dx}}{{\left( {{a^2} - {x^2}} \right)}} = \dfrac{1}{{2a}}\ln \left| {\dfrac{{a + x}}{{a - x}}} \right|} $ + c in the above integrals, we can write
$ \Rightarrow \dfrac{1}{2}\left( {\dfrac{2}{{2\sqrt 2 }}\ln \left| {\dfrac{{1 + \sqrt 2 t}}{{1 - \sqrt 2 t}}} \right|} \right) - \dfrac{1}{2}\left( {\dfrac{1}{2}\ln \left| {\dfrac{{1 + t}}{{1 - t}}} \right|} \right)$+ c
Substituting the value of t = sin x in the equation, we get
$ \Rightarrow \dfrac{1}{{2\sqrt 2 }}\ln \left| {\dfrac{{1 + \sqrt 2 \sin x}}{{1 - \sqrt 2 \sin x}}} \right| - \dfrac{1}{4}\ln \left| {\dfrac{{1 + \sin x}}{{1 - \sin x}}} \right| + c$
Hence, we can say that option(A) is correct.
Note:
For any integration problem our first approach should be to resolve the problem into simpler one by any means. In this question we have used trigonometric identity to resolve the integral into the known formula then we can directly apply the formula as we did in our solution.
We will first write cosec x in terms of sin x and after that we will expand the term using trigonometric identity: sin 2x = 2 sin x cos x. We will use another trigonometric identity:
$\cos 2x=1-2\sin ^{2}x$ afterwards. Using the identity $\cos ^{2}x=1-\sin ^{2}x$, we will simplify it further. Now, we will put sin x = t and hence, cos x dx = dt. We will solve it further for the terms to reduce in some known form of integral function. We will use the formula of integrals as:
$\int {\dfrac{{dx}}{{\left( {{a^2} - {x^2}} \right)}} = \dfrac{1}{{2a}}\ln \left| {\dfrac{{a + x}}{{a - x}}} \right|} $+c and then we will find the required value of the given integral.
Complete step by step solution:
We are given an integral: $2\int {\sin x\cos ec4xdx} $.
Let us first convert cosec x in to sin x using the formula: cosec x = $\dfrac{1}{{\sin x}}$.
We can write the given integral as:
$ \Rightarrow 2\int {\dfrac{{\sin x}}{{\sin 4x}}dx} $
Now, expanding sin 4x using the trigonometric identity: sin 2x = 2 sin x cos x, here x = 2x.
$ \Rightarrow 2\int {\dfrac{{\sin x}}{{2\sin 2x\cos 2x}}dx} $
Again, simplifying the denominator using the trigonometric identity: sin 2x = 2 sin x cos x, here x = x.
$ \Rightarrow 2\int {\dfrac{{\sin x}}{{4\sin x\cos x\cos 2x}}dx} $
Using the trigonometric identity: $\cos 2x=1-2\sin ^{2}x$, we get
$
\Rightarrow \dfrac{1}{2}\int {\dfrac{1}{{\cos x\cos 2x}}dx} \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{1}{{\cos x\left( {1 - 2{{\sin }^2}x} \right)}}dx} \\
$
Multiplying and dividing by cos x, we get
$ \Rightarrow \dfrac{1}{2}\int {\dfrac{{\cos x}}{{{{\cos }^2}x\left( {1 - 2{{\sin }^2}x} \right)}}dx} $
Using the trigonometric identity: $\cos ^{2}x=1-\sin ^{2}x$, we get
$ \Rightarrow \dfrac{1}{2}\int {\dfrac{{\cos x}}{{\left( {1 - {{\sin }^2}x} \right)\left( {1 - 2{{\sin }^2}x} \right)}}dx} $
Now, put the value of sin x = t and hence on differentiating both sides, we get cos x dx = dt. Substituting these values in the integral obtained above, we get
$ \Rightarrow \dfrac{1}{2}\int {\dfrac{1}{{\left( {1 - {t^2}} \right)\left( {1 - 2{t^2}} \right)}}} dt$
We can write the numerator $1=2\left( 1-t^2 \right)-\left(1-2t^2 \right)$. Putting this value in the numerator, we get
$ \Rightarrow \dfrac{1}{2}\int {\dfrac{{2\left( {1 - {t^2}} \right) - \left( {1 - 2{t^2}} \right)}}{{\left( {1 - {t^2}} \right)\left( {1 - 2{t^2}} \right)}}} dt$
We can separate the integral as:
$ \Rightarrow \dfrac{1}{2}\int {\dfrac{{2\left( {1 - {t^2}} \right)}}{{\left( {1 - {t^2}} \right)\left( {1 - 2{t^2}} \right)}}} dt - \dfrac{1}{2}\int {\dfrac{{\left( {1 - 2{t^2}} \right)}}{{\left( {1 - {t^2}} \right)\left( {1 - 2{t^2}} \right)}}} dt$
$ \Rightarrow \dfrac{1}{2}\int {\dfrac{2}{{\left( {1 - 2{t^2}} \right)}}} dt - \dfrac{1}{2}\int {\dfrac{1}{{\left( {1 - {t^2}} \right)}}} dt$
Now, using the integral formula: $\int {\dfrac{{dx}}{{\left( {{a^2} - {x^2}} \right)}} = \dfrac{1}{{2a}}\ln \left| {\dfrac{{a + x}}{{a - x}}} \right|} $ + c in the above integrals, we can write
$ \Rightarrow \dfrac{1}{2}\left( {\dfrac{2}{{2\sqrt 2 }}\ln \left| {\dfrac{{1 + \sqrt 2 t}}{{1 - \sqrt 2 t}}} \right|} \right) - \dfrac{1}{2}\left( {\dfrac{1}{2}\ln \left| {\dfrac{{1 + t}}{{1 - t}}} \right|} \right)$+ c
Substituting the value of t = sin x in the equation, we get
$ \Rightarrow \dfrac{1}{{2\sqrt 2 }}\ln \left| {\dfrac{{1 + \sqrt 2 \sin x}}{{1 - \sqrt 2 \sin x}}} \right| - \dfrac{1}{4}\ln \left| {\dfrac{{1 + \sin x}}{{1 - \sin x}}} \right| + c$
Hence, we can say that option(A) is correct.
Note:
For any integration problem our first approach should be to resolve the problem into simpler one by any means. In this question we have used trigonometric identity to resolve the integral into the known formula then we can directly apply the formula as we did in our solution.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
