
The value of \[1 + 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots \ldots + n \cdot n!\] is
A \[\left( {n + 1} \right)! + 1\]
B \[\left( {n - 1} \right)! + 1\]
C \[\left( {n + 1} \right)! – 1\]
D \[\left( {n + 1} \right)!\]
Answer
583.2k+ views
- Hint: In this problem, we first need to convert the given expression as a sum of \[n + 1\] terms by adding and subtracting 1. Next, use the property of the factorial to simplify the obtained equation.
Complete step-by-step solution -
Consider the given expression \[1 + 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots \ldots + n \cdot n!\] as\[p\].
\[P = 1 + 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots \ldots + n \cdot n!\]
Now, rewrite the above expression as the sum of \[n + 1\] terms as shown below.
\[
\,\,\,\,\,\,P = 1 + \left( {2 - 1} \right)1! + \left( {3 - 1} \right)2! + \ldots \ldots + \left( {n + 1 - 1} \right)n! \\
\Rightarrow P = 1 + 2 \cdot 1! - 1 \cdot 1! + 3 \cdot 2! - 1 \cdot 2! \ldots \ldots + \left( {n + 1} \right)n! - n! \\
\Rightarrow P = 1 + 2! - 1! + 3! - 2! \ldots \ldots + \left( {n + 1} \right)! - n! \\
\Rightarrow P = 1 + \left( {n + 1} \right)! - 1 \\
\Rightarrow P = \left( {n + 1} \right)! \\
\]
Thus, the value of \[1 + 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots \ldots + n \cdot n!\] is \[\left( {n + 1} \right)!\], hence, the option (D) is the correct answer.
Note: The factorial of a number \[n\] is a product of the natural numbers being \[n\] along with\[n\]. For example: \[5! = 5 \times 4 \times 3 \times 2 \times 1\]. The factorial of a number cannot be negative. The factorial of 0 is 1.
Complete step-by-step solution -
Consider the given expression \[1 + 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots \ldots + n \cdot n!\] as\[p\].
\[P = 1 + 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots \ldots + n \cdot n!\]
Now, rewrite the above expression as the sum of \[n + 1\] terms as shown below.
\[
\,\,\,\,\,\,P = 1 + \left( {2 - 1} \right)1! + \left( {3 - 1} \right)2! + \ldots \ldots + \left( {n + 1 - 1} \right)n! \\
\Rightarrow P = 1 + 2 \cdot 1! - 1 \cdot 1! + 3 \cdot 2! - 1 \cdot 2! \ldots \ldots + \left( {n + 1} \right)n! - n! \\
\Rightarrow P = 1 + 2! - 1! + 3! - 2! \ldots \ldots + \left( {n + 1} \right)! - n! \\
\Rightarrow P = 1 + \left( {n + 1} \right)! - 1 \\
\Rightarrow P = \left( {n + 1} \right)! \\
\]
Thus, the value of \[1 + 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots \ldots + n \cdot n!\] is \[\left( {n + 1} \right)!\], hence, the option (D) is the correct answer.
Note: The factorial of a number \[n\] is a product of the natural numbers being \[n\] along with\[n\]. For example: \[5! = 5 \times 4 \times 3 \times 2 \times 1\]. The factorial of a number cannot be negative. The factorial of 0 is 1.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

