
The value of \[1 + 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots \ldots + n \cdot n!\] is
A \[\left( {n + 1} \right)! + 1\]
B \[\left( {n - 1} \right)! + 1\]
C \[\left( {n + 1} \right)! – 1\]
D \[\left( {n + 1} \right)!\]
Answer
597.3k+ views
- Hint: In this problem, we first need to convert the given expression as a sum of \[n + 1\] terms by adding and subtracting 1. Next, use the property of the factorial to simplify the obtained equation.
Complete step-by-step solution -
Consider the given expression \[1 + 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots \ldots + n \cdot n!\] as\[p\].
\[P = 1 + 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots \ldots + n \cdot n!\]
Now, rewrite the above expression as the sum of \[n + 1\] terms as shown below.
\[
\,\,\,\,\,\,P = 1 + \left( {2 - 1} \right)1! + \left( {3 - 1} \right)2! + \ldots \ldots + \left( {n + 1 - 1} \right)n! \\
\Rightarrow P = 1 + 2 \cdot 1! - 1 \cdot 1! + 3 \cdot 2! - 1 \cdot 2! \ldots \ldots + \left( {n + 1} \right)n! - n! \\
\Rightarrow P = 1 + 2! - 1! + 3! - 2! \ldots \ldots + \left( {n + 1} \right)! - n! \\
\Rightarrow P = 1 + \left( {n + 1} \right)! - 1 \\
\Rightarrow P = \left( {n + 1} \right)! \\
\]
Thus, the value of \[1 + 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots \ldots + n \cdot n!\] is \[\left( {n + 1} \right)!\], hence, the option (D) is the correct answer.
Note: The factorial of a number \[n\] is a product of the natural numbers being \[n\] along with\[n\]. For example: \[5! = 5 \times 4 \times 3 \times 2 \times 1\]. The factorial of a number cannot be negative. The factorial of 0 is 1.
Complete step-by-step solution -
Consider the given expression \[1 + 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots \ldots + n \cdot n!\] as\[p\].
\[P = 1 + 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots \ldots + n \cdot n!\]
Now, rewrite the above expression as the sum of \[n + 1\] terms as shown below.
\[
\,\,\,\,\,\,P = 1 + \left( {2 - 1} \right)1! + \left( {3 - 1} \right)2! + \ldots \ldots + \left( {n + 1 - 1} \right)n! \\
\Rightarrow P = 1 + 2 \cdot 1! - 1 \cdot 1! + 3 \cdot 2! - 1 \cdot 2! \ldots \ldots + \left( {n + 1} \right)n! - n! \\
\Rightarrow P = 1 + 2! - 1! + 3! - 2! \ldots \ldots + \left( {n + 1} \right)! - n! \\
\Rightarrow P = 1 + \left( {n + 1} \right)! - 1 \\
\Rightarrow P = \left( {n + 1} \right)! \\
\]
Thus, the value of \[1 + 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots \ldots + n \cdot n!\] is \[\left( {n + 1} \right)!\], hence, the option (D) is the correct answer.
Note: The factorial of a number \[n\] is a product of the natural numbers being \[n\] along with\[n\]. For example: \[5! = 5 \times 4 \times 3 \times 2 \times 1\]. The factorial of a number cannot be negative. The factorial of 0 is 1.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

