
The value closest to the thermal velocity of a Helium atom at room temperature \[{\text{(300}}\,{\text{K)}}\] in \[{\text{m}}{{\text{s}}^{ - {\text{1}}}}\] is:
\[\left[ {{k_{\text{B}}} = 1.4 \times {{10}^{ - 23}}\,{\text{J}}{{\text{K}}^{ - 1}}:\,\,{m_{{\text{He}}}} = 7 \times {{10}^{ - 27}}\,{\text{kg}}} \right]\]
(A) \[1.3 \times {10^4}\]
(B) \[1.3 \times {10^3}\]
(C) \[1.3 \times {10^5}\]
(D) \[1.3 \times {10^2}\]
Answer
562.5k+ views
Hint:In order to solve this problem we are going to use the concept of root mean square velocity of the gas molecules which is nothing but the root mean square of the individual gas molecule’s velocity.After applying its formula we can arrive at the desired result.
Formula used:
\[{V_{{\text{rms}}}} = \sqrt {\dfrac{{3RT}}{M}} \] ……….(1)
Where,
\[{V_{{\text{rms}}}}\] indicates the RMS velocity.
\[R\] indicates gas constant.
\[T\] indicates temperature in kelvin scale, and
\[M\] indicates the molecular mass of the gas.
\[{k_B} = \dfrac{R}{{{N_{\text{A}}}}}\] ………… (2)
Where,
\[{k_B}\] indicates Boltzmann constant.
\[R\] indicates gas constant, and
\[{N_{\text{A}}}\] indicates Avogadro’s number.
\[{N_{\text{A}}} = \dfrac{{{M_{{\text{He}}}}}}{{{m_{{\text{He}}}}}}\] ………..(3)
\[{M_{{\text{He}}}}\] indicates molecular mass of the gas.
\[{m_{{\text{He}}}}\] indicates mass of one atom.
Complete step by step answer:
Thermal velocity or thermal velocity is a normal velocity in the thermal motion of particles containing a gas, liquid, etc. Thus, literally, a temperature measurement is thermal velocity.
We know that root mean square (RMS) velocity of molecules is given by the equation(1).But in the problem, we are supplied with Boltzmann constant and mass of one atom of Helium, so need to modify the equation (1)
Now, we use equation (3) in equation (2):
\[
{k_B} = \dfrac{R}{{{N_{\text{A}}}}} \\
\Rightarrow{k_B} = \dfrac{R}{{\left( {\dfrac{{{M_{{\text{He}}}}}}{{{ m _{{\text{He}}}}}}} \right)}} \\
\Rightarrow{k_B} = \dfrac{{R{ m _{{\text{He}}}}}}{{{M_{{\text{He}}}}}} \\
\Rightarrow\dfrac{{{k_B}}}{{{m_{{\text{He}}}}}} = \dfrac{R}{{{M_{{\text{He}}}}}} \\
\]
Now, we substitute:
\[\dfrac{{{k_B}}}{{{m_{{\text{He}}}}}} = \dfrac{R}{{{M_{{\text{He}}}}}}\] in equation (1):
\[
\Rightarrow{V_{{\text{rms}}}} = \sqrt {\dfrac{{3RT}}{{{M_{{\text{He}}}}}}} \\
\Rightarrow{V_{{\text{rms}}}}= \sqrt {\dfrac{{3{k_{\text{B}}}T}}{{{m_{{\text{He}}}}}}} \\
\] …… (4)
Finally, substitute, \[{k_{\text{B}}} = 1.4 \times {10^{ - 23}}\,{\text{J/K}}\], \[\,{m_{{\text{He}}}} = 7 \times {10^{ - 27}}\,{\text{kg}}\] and \[T = 300\,{\text{K}}\] in the equation (4):
\[
{V_{{\text{rms}}}} = \sqrt {\dfrac{{3{k_{\text{B}}}T}}{{{m_{{\text{He}}}}}}} \\
\Rightarrow{V_{{\text{rms}}}}= \sqrt {\dfrac{{3 \times 1.4 \times {{10}^{ - 23}}\,{\text{J/K}} \times 300\,{\text{K}}}}{{7 \times {{10}^{ - 27}}\,{\text{kg}}}}} \\
\Rightarrow{V_{{\text{rms}}}}= \sqrt {1.8 \times {{10}^6}} \\
\therefore{V_{{\text{rms}}}}= 1.34 \times {10^3}\,{\text{m}}{{\text{s}}^{ - 1}} \\
\]
The velocity is found out to be:
\[1.34 \times {10^3}\,{\text{m}}{{\text{s}}^{ - 1}} \sim 1.3 \times
{10^3}\,{\text{m}}{{\text{s}}^{ - 1}}\]
Hence, the correct option is (B).
Note: In this problem we are asked to find the velocity closest to the thermal velocity of a Helium atom at room temperature. Generally, while solving this problem, students tend to use the temperature in degree centigrade, but using this it will affect the result. Always use the kelvin scale of temperature, even if the temperature is provided in degree centigrade.
Formula used:
\[{V_{{\text{rms}}}} = \sqrt {\dfrac{{3RT}}{M}} \] ……….(1)
Where,
\[{V_{{\text{rms}}}}\] indicates the RMS velocity.
\[R\] indicates gas constant.
\[T\] indicates temperature in kelvin scale, and
\[M\] indicates the molecular mass of the gas.
\[{k_B} = \dfrac{R}{{{N_{\text{A}}}}}\] ………… (2)
Where,
\[{k_B}\] indicates Boltzmann constant.
\[R\] indicates gas constant, and
\[{N_{\text{A}}}\] indicates Avogadro’s number.
\[{N_{\text{A}}} = \dfrac{{{M_{{\text{He}}}}}}{{{m_{{\text{He}}}}}}\] ………..(3)
\[{M_{{\text{He}}}}\] indicates molecular mass of the gas.
\[{m_{{\text{He}}}}\] indicates mass of one atom.
Complete step by step answer:
Thermal velocity or thermal velocity is a normal velocity in the thermal motion of particles containing a gas, liquid, etc. Thus, literally, a temperature measurement is thermal velocity.
We know that root mean square (RMS) velocity of molecules is given by the equation(1).But in the problem, we are supplied with Boltzmann constant and mass of one atom of Helium, so need to modify the equation (1)
Now, we use equation (3) in equation (2):
\[
{k_B} = \dfrac{R}{{{N_{\text{A}}}}} \\
\Rightarrow{k_B} = \dfrac{R}{{\left( {\dfrac{{{M_{{\text{He}}}}}}{{{ m _{{\text{He}}}}}}} \right)}} \\
\Rightarrow{k_B} = \dfrac{{R{ m _{{\text{He}}}}}}{{{M_{{\text{He}}}}}} \\
\Rightarrow\dfrac{{{k_B}}}{{{m_{{\text{He}}}}}} = \dfrac{R}{{{M_{{\text{He}}}}}} \\
\]
Now, we substitute:
\[\dfrac{{{k_B}}}{{{m_{{\text{He}}}}}} = \dfrac{R}{{{M_{{\text{He}}}}}}\] in equation (1):
\[
\Rightarrow{V_{{\text{rms}}}} = \sqrt {\dfrac{{3RT}}{{{M_{{\text{He}}}}}}} \\
\Rightarrow{V_{{\text{rms}}}}= \sqrt {\dfrac{{3{k_{\text{B}}}T}}{{{m_{{\text{He}}}}}}} \\
\] …… (4)
Finally, substitute, \[{k_{\text{B}}} = 1.4 \times {10^{ - 23}}\,{\text{J/K}}\], \[\,{m_{{\text{He}}}} = 7 \times {10^{ - 27}}\,{\text{kg}}\] and \[T = 300\,{\text{K}}\] in the equation (4):
\[
{V_{{\text{rms}}}} = \sqrt {\dfrac{{3{k_{\text{B}}}T}}{{{m_{{\text{He}}}}}}} \\
\Rightarrow{V_{{\text{rms}}}}= \sqrt {\dfrac{{3 \times 1.4 \times {{10}^{ - 23}}\,{\text{J/K}} \times 300\,{\text{K}}}}{{7 \times {{10}^{ - 27}}\,{\text{kg}}}}} \\
\Rightarrow{V_{{\text{rms}}}}= \sqrt {1.8 \times {{10}^6}} \\
\therefore{V_{{\text{rms}}}}= 1.34 \times {10^3}\,{\text{m}}{{\text{s}}^{ - 1}} \\
\]
The velocity is found out to be:
\[1.34 \times {10^3}\,{\text{m}}{{\text{s}}^{ - 1}} \sim 1.3 \times
{10^3}\,{\text{m}}{{\text{s}}^{ - 1}}\]
Hence, the correct option is (B).
Note: In this problem we are asked to find the velocity closest to the thermal velocity of a Helium atom at room temperature. Generally, while solving this problem, students tend to use the temperature in degree centigrade, but using this it will affect the result. Always use the kelvin scale of temperature, even if the temperature is provided in degree centigrade.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

