
The thrust (F) versus time graph of a rocket is shown in the figure. The mass of the rocket is 1200g. Then the velocity of the rocket after 16 seconds starting from rest (Neglect the gravity)
A. \[300\dfrac{m}{s}\]
B. \[200\sqrt 2 \dfrac{m}{s}\]
C. \[100\dfrac{m}{s}\]
D. \[200\dfrac{m}{s}\]

Answer
480.9k+ views
Hint: In the given question, change the force-time curve into the acceleration-time curve since acceleration is the change in velocity of time by using newton’s second law of motion. Newton’s second law of motion states the acceleration of an object produced by a net force is proportional to the mass of that object. For the result, we need to find the area under the acceleration-time curve.
Complete step by step answer:
Given the mass of the rocket is 1200 grams and from the figure, it can be observed that the maximum force is 20 newton. From the newton’s second law of motion, we can write, \[F = ma\]
Substitute 1200 grams (or 1200/1000 kilograms) for mass and 20 newtons for the force in the formula \[F = ma\] to determine the acceleration of the rocket.
\[
F = ma \\
a = \dfrac{F}{m} \\
= \dfrac{{20}}{{\left( {\dfrac{{1200}}{{1000}}} \right)}} \\
= \dfrac{{20}}{{1.2}} \\
= \dfrac{{50}}{3} \\
\]
Now we can draw acceleration time graph as
Now the area in the acceleration-time graph changes with velocity hence we can say
Change in velocity= area under the graph which equals to the area of the rectangle and two areas of the triangles.
$`
v - u = \left( {\dfrac{1}{2} \times \dfrac{{50}}{3} \times 2} \right) + \left( {\dfrac{{50}}{3} \times \left( {10 - 2} \right)} \right) + \left( {\dfrac{1}{2} \times \dfrac{{50}}{3} \times \left( {16 - 10} \right)} \right) \\
v - u = \left( {\dfrac{1}{2} \times \dfrac{{50}}{3} \times 2} \right) + \left( {\dfrac{{50}}{3} \times 8} \right) + \left( {\dfrac{1}{2} \times \dfrac{{50}}{3} \times 6} \right) \\
\implies v - u = \dfrac{{50}}{3}\left[ {1 + 8 + 3} \right] \\
\implies v - u = \dfrac{{50}}{3} \times 12 \\
\implies v - u = 50 \times 4 \\
\implies v - u = 200{\text{ m/sec}} \\
$
Since the objects start from rest so we can say \[u = 0\]
Hence the velocity of the rocket will be
\[
v - 0 = 200{\text{ m/sec}} \\
v = 200{\text{ m/sec}} \\
\]
Therefore the velocity of the rocket after 16 seconds starting from rest is \[200{\text{ m/sec}}\].
So, the correct answer is “Option D”.
Note:
As we know the area under a curve is the same as the definite integral between two fixed points hence we can also use the method of integration to find the change in momentum. Moreover, the given curve is between thrust (force) and the time but we need the velocity which can be determined by the acceleration-time curve, so it should be transformed accordingly.
Complete step by step answer:
Given the mass of the rocket is 1200 grams and from the figure, it can be observed that the maximum force is 20 newton. From the newton’s second law of motion, we can write, \[F = ma\]
Substitute 1200 grams (or 1200/1000 kilograms) for mass and 20 newtons for the force in the formula \[F = ma\] to determine the acceleration of the rocket.
\[
F = ma \\
a = \dfrac{F}{m} \\
= \dfrac{{20}}{{\left( {\dfrac{{1200}}{{1000}}} \right)}} \\
= \dfrac{{20}}{{1.2}} \\
= \dfrac{{50}}{3} \\
\]
Now we can draw acceleration time graph as

Now the area in the acceleration-time graph changes with velocity hence we can say
Change in velocity= area under the graph which equals to the area of the rectangle and two areas of the triangles.
$`
v - u = \left( {\dfrac{1}{2} \times \dfrac{{50}}{3} \times 2} \right) + \left( {\dfrac{{50}}{3} \times \left( {10 - 2} \right)} \right) + \left( {\dfrac{1}{2} \times \dfrac{{50}}{3} \times \left( {16 - 10} \right)} \right) \\
v - u = \left( {\dfrac{1}{2} \times \dfrac{{50}}{3} \times 2} \right) + \left( {\dfrac{{50}}{3} \times 8} \right) + \left( {\dfrac{1}{2} \times \dfrac{{50}}{3} \times 6} \right) \\
\implies v - u = \dfrac{{50}}{3}\left[ {1 + 8 + 3} \right] \\
\implies v - u = \dfrac{{50}}{3} \times 12 \\
\implies v - u = 50 \times 4 \\
\implies v - u = 200{\text{ m/sec}} \\
$
Since the objects start from rest so we can say \[u = 0\]
Hence the velocity of the rocket will be
\[
v - 0 = 200{\text{ m/sec}} \\
v = 200{\text{ m/sec}} \\
\]
Therefore the velocity of the rocket after 16 seconds starting from rest is \[200{\text{ m/sec}}\].
So, the correct answer is “Option D”.
Note:
As we know the area under a curve is the same as the definite integral between two fixed points hence we can also use the method of integration to find the change in momentum. Moreover, the given curve is between thrust (force) and the time but we need the velocity which can be determined by the acceleration-time curve, so it should be transformed accordingly.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
