
The term independent of x in the expansion of \[\left( \dfrac{1}{60}-\dfrac{{{x}^{8}}}{81} \right).{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}\] is equal to
(A) 36
(B) -108
(C) -72
(D) -36
Answer
578.4k+ views
Hint: We solve this question by dividing the given expression into two parts and then finding the term that is independent of x in each part and then finding the value of that term in the expansion using the formula for binomial expansion \[{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+........+{}^{n}{{C}_{n-1}}{{a}^{1}}{{b}^{n-1}}+{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}}\]. Then subtract the obtained result in the given order to get the final result.
Complete step-by-step answer:
We are given, \[\left( \dfrac{1}{60}-\dfrac{{{x}^{8}}}{81} \right).{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}\]
It can be simplified as,
\[\begin{align}
& \Rightarrow \left( \dfrac{1}{60}-\dfrac{{{x}^{8}}}{81} \right).{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}} \\
& \Rightarrow \dfrac{1}{60}{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}-\dfrac{{{x}^{8}}}{81}{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}...............\left( 1 \right) \\
\end{align}\]
Let us divide the expression into two parts such that \[\dfrac{1}{60}{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}\] and \[\dfrac{{{x}^{8}}}{81}{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}\].
Let us try to find the term independent of x from part 1.
Now let us consider the formula for binomial expansion,
\[{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+........+{}^{n}{{C}_{n-1}}{{a}^{1}}{{b}^{n-1}}+{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}}\]
The value of ${{r}^{th}}$ term in the expansion is \[{}^{n}{{C}_{r-1}}{{a}^{r-1}}{{b}^{n-r+1}}\]
Now, let us apply it on the first part, that is \[\dfrac{1}{60}{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}\].
Then the ${{r}^{th}}$ term in the expansion can be given by
\[\begin{align}
& \Rightarrow \dfrac{1}{60}\times {}^{6}{{C}_{r-1}}{{\left( 2{{x}^{2}} \right)}^{r-1}}{{\left( \dfrac{-3}{{{x}^{2}}} \right)}^{6-r+1}} \\
& \Rightarrow \dfrac{1}{60}\times {}^{6}{{C}_{r-1}}\times {{2}^{r-1}}{{x}^{2}}^{r-2}{{\left( -3 \right)}^{6-r+1}}\dfrac{1}{{{\left( {{x}^{2}} \right)}^{7-r}}} \\
& \Rightarrow \dfrac{1}{60}\times {}^{6}{{C}_{r-1}}\times {{2}^{r-1}}{{x}^{2}}^{r-2}{{\left( -3 \right)}^{6-r+1}}{{\left( {{x}^{2}} \right)}^{r-7}} \\
& \Rightarrow \dfrac{1}{60}\times {}^{6}{{C}_{r-1}}\times {{2}^{r-1}}{{x}^{2}}^{r-2}{{\left( -3 \right)}^{6-r+1}}{{x}^{2r-14}} \\
& \Rightarrow \dfrac{1}{60}\times {}^{6}{{C}_{r-1}}\times {{2}^{r-1}}{{\left( -3 \right)}^{6-r+1}}{{x}^{4r-16}} \\
\end{align}\]
As we need the term independent of x,
$\begin{align}
& \Rightarrow 4r-16=0 \\
& \Rightarrow 4r=16 \\
& \Rightarrow r=4 \\
\end{align}$
So, we get that ${{4}^{th}}$ term is independent of x. Then value of ${{4}^{th}}$ term in the part 1 is
\[\begin{align}
& \Rightarrow \dfrac{1}{60}\times {}^{6}{{C}_{4-1}}\times {{2}^{4-1}}{{\left( -3 \right)}^{6-4+1}}{{x}^{4\left( 4 \right)-16}} \\
& \Rightarrow \dfrac{1}{60}\times {}^{6}{{C}_{3}}\times {{2}^{3}}{{\left( -3 \right)}^{3}}{{x}^{0}} \\
& \Rightarrow \dfrac{1}{60}\times \dfrac{6!}{3!\times 3!}\times 8\times \left( -27 \right) \\
& \Rightarrow \dfrac{1}{60}\times \dfrac{720}{6\times 6}\times 8\times \left( -27 \right) \\
& \Rightarrow \dfrac{1}{60}\times 20\times 8\times \left( -27 \right) \\
& \Rightarrow \dfrac{1}{60}\times \left( -4320 \right) \\
& \Rightarrow -72 \\
\end{align}\]
So constant from part 1 is -72.
From part 2, we have \[\dfrac{{{x}^{8}}}{81}{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}\]. For the term in it to be constant we need to find the terms in the expansion \[{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}\] which results in ${{x}^{-8}}$.
The (r+1) term in the expansion will be \[{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}\].
\[{}^{6}{{C}_{r}}{{\left( 2{{x}^{2}} \right)}^{r}}{{\left( \dfrac{-3}{{{x}^{2}}} \right)}^{6-r}}\]
\[\Rightarrow \]\[{}^{6}{{C}_{r}}{{2}^{r}}{{(-3)}^{6-r}}\left( \dfrac{{{x}^{2r}}}{{{x}^{2(6-r)}}} \right)\]
\[\Rightarrow \]\[{}^{6}{{C}_{r}}{{2}^{r}}{{(-3)}^{6-r}}\left( {{x}^{2r-12+2r}} \right)\]
\[\Rightarrow \]\[{}^{6}{{C}_{r}}{{2}^{r}}{{(-3)}^{6-r}}\left( {{x}^{4r-12}} \right)\]
So, from this we can say that
\[4r-12=-8\]
\[4r=12-8\]
\[\Rightarrow 4r=4\]
\[\Rightarrow r=1\]
Substituting r=1 in the value of expansion we get,
\[\Rightarrow {}^{6}{{C}_{1}}{{\left( 2{{x}^{2}} \right)}^{1}}{{\left( \dfrac{-3}{{{x}^{2}}} \right)}^{6-1}}\]
\[\Rightarrow {}^{6}{{C}_{1}}{{\left( 2{{x}^{2}} \right)}^{1}}{{\left( \dfrac{-3}{{{x}^{2}}} \right)}^{5}}\]
\[\Rightarrow 6\times 2\times {{(-3)}^{5}}\left( \dfrac{{{x}^{2}}}{{{x}^{10}}} \right)\]
\[\Rightarrow 6\times 2\times {{(-3)}^{5}}\left( \dfrac{1}{{{x}^{8}}} \right)\]
As we need the value of \[\dfrac{{{x}^{8}}}{81}{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}\], multiplying with the term \[\dfrac{{{x}^{8}}}{81}\], we get \[\Rightarrow 6\times 2\times {{(-3)}^{5}}\left( \dfrac{1}{{{x}^{8}}} \right)\left( \dfrac{{{x}^{8}}}{81} \right)\]
\[\Rightarrow \dfrac{6\times 2\times (81)\times (-3)}{81}\]\[=-36\]
Substituting the values in (1) we get
\[(-72)-(-36)=-72+36=-36\]
So, the term independent of x is -36.
Hence answer is option D.
Note: The major mistake one does while solving this problem is one might forget to multiply the obtained result with \[\dfrac{1}{60}\] in the first part and with \[\dfrac{1}{81}\], in the second part. So, one needs to look at the terms carefully and multiply them at the end.
Complete step-by-step answer:
We are given, \[\left( \dfrac{1}{60}-\dfrac{{{x}^{8}}}{81} \right).{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}\]
It can be simplified as,
\[\begin{align}
& \Rightarrow \left( \dfrac{1}{60}-\dfrac{{{x}^{8}}}{81} \right).{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}} \\
& \Rightarrow \dfrac{1}{60}{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}-\dfrac{{{x}^{8}}}{81}{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}...............\left( 1 \right) \\
\end{align}\]
Let us divide the expression into two parts such that \[\dfrac{1}{60}{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}\] and \[\dfrac{{{x}^{8}}}{81}{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}\].
Let us try to find the term independent of x from part 1.
Now let us consider the formula for binomial expansion,
\[{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+........+{}^{n}{{C}_{n-1}}{{a}^{1}}{{b}^{n-1}}+{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}}\]
The value of ${{r}^{th}}$ term in the expansion is \[{}^{n}{{C}_{r-1}}{{a}^{r-1}}{{b}^{n-r+1}}\]
Now, let us apply it on the first part, that is \[\dfrac{1}{60}{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}\].
Then the ${{r}^{th}}$ term in the expansion can be given by
\[\begin{align}
& \Rightarrow \dfrac{1}{60}\times {}^{6}{{C}_{r-1}}{{\left( 2{{x}^{2}} \right)}^{r-1}}{{\left( \dfrac{-3}{{{x}^{2}}} \right)}^{6-r+1}} \\
& \Rightarrow \dfrac{1}{60}\times {}^{6}{{C}_{r-1}}\times {{2}^{r-1}}{{x}^{2}}^{r-2}{{\left( -3 \right)}^{6-r+1}}\dfrac{1}{{{\left( {{x}^{2}} \right)}^{7-r}}} \\
& \Rightarrow \dfrac{1}{60}\times {}^{6}{{C}_{r-1}}\times {{2}^{r-1}}{{x}^{2}}^{r-2}{{\left( -3 \right)}^{6-r+1}}{{\left( {{x}^{2}} \right)}^{r-7}} \\
& \Rightarrow \dfrac{1}{60}\times {}^{6}{{C}_{r-1}}\times {{2}^{r-1}}{{x}^{2}}^{r-2}{{\left( -3 \right)}^{6-r+1}}{{x}^{2r-14}} \\
& \Rightarrow \dfrac{1}{60}\times {}^{6}{{C}_{r-1}}\times {{2}^{r-1}}{{\left( -3 \right)}^{6-r+1}}{{x}^{4r-16}} \\
\end{align}\]
As we need the term independent of x,
$\begin{align}
& \Rightarrow 4r-16=0 \\
& \Rightarrow 4r=16 \\
& \Rightarrow r=4 \\
\end{align}$
So, we get that ${{4}^{th}}$ term is independent of x. Then value of ${{4}^{th}}$ term in the part 1 is
\[\begin{align}
& \Rightarrow \dfrac{1}{60}\times {}^{6}{{C}_{4-1}}\times {{2}^{4-1}}{{\left( -3 \right)}^{6-4+1}}{{x}^{4\left( 4 \right)-16}} \\
& \Rightarrow \dfrac{1}{60}\times {}^{6}{{C}_{3}}\times {{2}^{3}}{{\left( -3 \right)}^{3}}{{x}^{0}} \\
& \Rightarrow \dfrac{1}{60}\times \dfrac{6!}{3!\times 3!}\times 8\times \left( -27 \right) \\
& \Rightarrow \dfrac{1}{60}\times \dfrac{720}{6\times 6}\times 8\times \left( -27 \right) \\
& \Rightarrow \dfrac{1}{60}\times 20\times 8\times \left( -27 \right) \\
& \Rightarrow \dfrac{1}{60}\times \left( -4320 \right) \\
& \Rightarrow -72 \\
\end{align}\]
So constant from part 1 is -72.
From part 2, we have \[\dfrac{{{x}^{8}}}{81}{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}\]. For the term in it to be constant we need to find the terms in the expansion \[{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}\] which results in ${{x}^{-8}}$.
The (r+1) term in the expansion will be \[{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}\].
\[{}^{6}{{C}_{r}}{{\left( 2{{x}^{2}} \right)}^{r}}{{\left( \dfrac{-3}{{{x}^{2}}} \right)}^{6-r}}\]
\[\Rightarrow \]\[{}^{6}{{C}_{r}}{{2}^{r}}{{(-3)}^{6-r}}\left( \dfrac{{{x}^{2r}}}{{{x}^{2(6-r)}}} \right)\]
\[\Rightarrow \]\[{}^{6}{{C}_{r}}{{2}^{r}}{{(-3)}^{6-r}}\left( {{x}^{2r-12+2r}} \right)\]
\[\Rightarrow \]\[{}^{6}{{C}_{r}}{{2}^{r}}{{(-3)}^{6-r}}\left( {{x}^{4r-12}} \right)\]
So, from this we can say that
\[4r-12=-8\]
\[4r=12-8\]
\[\Rightarrow 4r=4\]
\[\Rightarrow r=1\]
Substituting r=1 in the value of expansion we get,
\[\Rightarrow {}^{6}{{C}_{1}}{{\left( 2{{x}^{2}} \right)}^{1}}{{\left( \dfrac{-3}{{{x}^{2}}} \right)}^{6-1}}\]
\[\Rightarrow {}^{6}{{C}_{1}}{{\left( 2{{x}^{2}} \right)}^{1}}{{\left( \dfrac{-3}{{{x}^{2}}} \right)}^{5}}\]
\[\Rightarrow 6\times 2\times {{(-3)}^{5}}\left( \dfrac{{{x}^{2}}}{{{x}^{10}}} \right)\]
\[\Rightarrow 6\times 2\times {{(-3)}^{5}}\left( \dfrac{1}{{{x}^{8}}} \right)\]
As we need the value of \[\dfrac{{{x}^{8}}}{81}{{\left( 2{{x}^{2}}-\dfrac{3}{{{x}^{2}}} \right)}^{6}}\], multiplying with the term \[\dfrac{{{x}^{8}}}{81}\], we get \[\Rightarrow 6\times 2\times {{(-3)}^{5}}\left( \dfrac{1}{{{x}^{8}}} \right)\left( \dfrac{{{x}^{8}}}{81} \right)\]
\[\Rightarrow \dfrac{6\times 2\times (81)\times (-3)}{81}\]\[=-36\]
Substituting the values in (1) we get
\[(-72)-(-36)=-72+36=-36\]
So, the term independent of x is -36.
Hence answer is option D.
Note: The major mistake one does while solving this problem is one might forget to multiply the obtained result with \[\dfrac{1}{60}\] in the first part and with \[\dfrac{1}{81}\], in the second part. So, one needs to look at the terms carefully and multiply them at the end.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

