
The tangents drawn from a point P to the ellipse make an angle ${{\theta }_{1}}$ and ${{\theta }_{2}}$ with the major axis; find the locus of P when,
$\tan {{\theta }_{1}}-\tan {{\theta }_{2}}$ is constant $=d$
Answer
529.5k+ views
Hint: First write down the general equation of the ellipse and then the standard equation of tangent for ellipse for the tangent $y=mx\pm \sqrt{{{a}^{2}}{{m}^{2}}+{{b}^{2}}}$ , Let there be a point $P\left( h,k \right)$ that lies on that tangent. Now rewrite the tangent equation for the point $P\left( h,k \right)$ and then evaluate to form a quadratic expression in ‘m’ and proceed further to find the sum of roots, $\tan {{\theta }_{1}}+\tan {{\theta }_{2}}$ and then from there find the value of $\tan {{\theta }_{1}}-\tan {{\theta }_{2}}$
Complete step by step solution:
Let us write the general equation for an ellipse.
It is given by,
$\Rightarrow \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ considered that $\left( a>b \right)$
Hence, X-axis is the major axis.
As we have the equation of tangent drawn from an external point with given slope is
$y=mx\pm \sqrt{{{a}^{2}}{{m}^{2}}+{{b}^{2}}}$
The slope of the tangent ${{T}_{1}}=\tan {{\theta }_{1}}$
And the slope of the tangent ${{T}_{2}}=\tan {{\theta }_{2}}$
Let us consider a point $P\left( h,k \right)$ that lies on this tangent.
We can rewrite the tangent equation as,
$\Rightarrow k=mh\pm \sqrt{{{a}^{2}}{{m}^{2}}+{{b}^{2}}}$
$\Rightarrow {{\left( k-mh \right)}^{2}}={{a}^{2}}{{m}^{2}}+{{b}^{2}}$
$\Rightarrow {{k}^{2}}+{{m}^{2}}{{h}^{2}}-2mkh={{a}^{2}}{{m}^{2}}+{{b}^{2}}$
$\Rightarrow {{m}^{2}}\left( {{h}^{2}}-{{a}^{2}} \right)-2mhk+{{k}^{2}}-{{b}^{2}}=0$
As m is a quadratic function, hence it has two roots or two tangents passing through P are there with slopes $\tan {{\theta }_{1}}$ and $\tan {{\theta }_{2}}$
Hence, $\tan {{\theta }_{1}}$ and $\tan {{\theta }_{2}}$ are roots of quadratic obtained.
The sum of roots for the quadratic equation is given by,
The Sum of roots is given by $=\dfrac{-b}{a}$ in $a{{x}^{2}}+bx+c=0$
$\Rightarrow \tan {{\theta }_{1}}+\tan {{\theta }_{2}}=\dfrac{2hk}{{{h}^{2}}-{{a}^{2}}}$
And the product of roots is given by,
Product of roots is given by $\dfrac{c}{a}$ in $a{{x}^{2}}+bx+c=0$
$\Rightarrow \tan {{\theta }_{1}}\tan {{\theta }_{2}}=\dfrac{{{k}^{2}}-{{b}^{2}}}{{{h}^{2}}-{{a}^{2}}}$
We also know that,
$\Rightarrow {{\left( a+b \right)}^{2}}={{\left( a-b \right)}^{2}}+4ab$
Substituting the slopes, we get,
$\Rightarrow {{\left( \tan {{\theta }_{1}}-\tan {{\theta }_{2}} \right)}^{2}}={{\left( \tan {{\theta }_{1}}+\tan {{\theta }_{2}} \right)}^{2}}+4\tan {{\theta }_{1}}\tan {{\theta }_{2}}$
As $\tan {{\theta }_{1}}-\tan {{\theta }_{2}}=d$ (given)
$\Rightarrow {{d}^{2}}={{\left( \dfrac{2hk}{{{h}^{2}}-{{a}^{2}}} \right)}^{2}}+4\left( \dfrac{{{k}^{2}}-{{b}^{2}}}{{{h}^{2}}-{{a}^{2}}} \right)$
On further evaluating we get,
$\Rightarrow {{d}^{2}}=\dfrac{4{{h}^{2}}{{k}^{2}}}{{{\left( {{h}^{2}}-{{a}^{2}} \right)}^{2}}}+4\left( \dfrac{{{k}^{2}}-{{b}^{2}}}{{{h}^{2}}-{{a}^{2}}} \right)$
$\Rightarrow {{d}^{2}}=\dfrac{4{{h}^{2}}{{k}^{2}}-4\left( {{h}^{2}}-{{a}^{2}} \right)\left( {{k}^{2}}-{{b}^{2}} \right)}{{{\left( {{h}^{2}}-{{a}^{2}} \right)}^{2}}}$
$\Rightarrow {{d}^{2}}{{\left( {{h}^{2}}-{{a}^{2}} \right)}^{2}}=4{{h}^{2}}{{k}^{2}}+4\left( {{k}^{2}}-{{b}^{2}} \right)\left( {{h}^{2}}-{{a}^{2}} \right)$
$\Rightarrow {{d}^{2}}{{\left( {{h}^{2}}-{{a}^{2}} \right)}^{2}}=4\left( {{h}^{2}}{{k}^{2}}-{{h}^{2}}{{k}^{2}}+{{a}^{2}}{{k}^{2}}+{{h}^{2}}{{b}^{2}}-{{a}^{2}}{{b}^{2}} \right)$
On simplifying,
$\Rightarrow {{d}^{2}}{{\left( {{h}^{2}}-{{a}^{2}} \right)}^{2}}=4\left( {{a}^{2}}{{k}^{2}}+{{h}^{2}}{{b}^{2}}-{{a}^{2}}{{b}^{2}} \right)$
Replacing (h, k) by (x, y) to get locus: -
$\Rightarrow {{d}^{2}}{{\left( {{x}^{2}}-{{a}^{2}} \right)}^{2}}=4\left( {{x}^{2}}-{{a}^{2}} \right)\left( {{y}^{2}}-{{b}^{2}} \right)+4{{x}^{2}}{{y}^{2}}$
Now the required locus is ${{d}^{2}}{{\left( {{x}^{2}}-{{a}^{2}} \right)}^{2}}=4\left( {{x}^{2}}-{{a}^{2}} \right)\left( {{y}^{2}}-{{b}^{2}} \right)+4{{x}^{2}}{{y}^{2}}$
Note: Eliminating ${{\theta }_{1}}\And {{\theta }_{2}}$ by using the given relation ${{\tan }^{2}}{{\theta }_{1}}+{{\tan }^{2}}{{\theta }_{1}}=\lambda$ with the help of quadratic formed in ‘m’ i.e. $y=mx\pm \sqrt{{{a}^{2}}{{m}^{2}}+{{b}^{2}}}$ or ${{\left( y-mx \right)}^{2}}={{a}^{2}}{{m}^{2}}+{{b}^{2}}$ by using properties of roots is the key point of this equation.
Complete step by step solution:
Let us write the general equation for an ellipse.
It is given by,
$\Rightarrow \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ considered that $\left( a>b \right)$
Hence, X-axis is the major axis.
As we have the equation of tangent drawn from an external point with given slope is
$y=mx\pm \sqrt{{{a}^{2}}{{m}^{2}}+{{b}^{2}}}$
The slope of the tangent ${{T}_{1}}=\tan {{\theta }_{1}}$
And the slope of the tangent ${{T}_{2}}=\tan {{\theta }_{2}}$
Let us consider a point $P\left( h,k \right)$ that lies on this tangent.
We can rewrite the tangent equation as,
$\Rightarrow k=mh\pm \sqrt{{{a}^{2}}{{m}^{2}}+{{b}^{2}}}$
$\Rightarrow {{\left( k-mh \right)}^{2}}={{a}^{2}}{{m}^{2}}+{{b}^{2}}$
$\Rightarrow {{k}^{2}}+{{m}^{2}}{{h}^{2}}-2mkh={{a}^{2}}{{m}^{2}}+{{b}^{2}}$
$\Rightarrow {{m}^{2}}\left( {{h}^{2}}-{{a}^{2}} \right)-2mhk+{{k}^{2}}-{{b}^{2}}=0$
As m is a quadratic function, hence it has two roots or two tangents passing through P are there with slopes $\tan {{\theta }_{1}}$ and $\tan {{\theta }_{2}}$
Hence, $\tan {{\theta }_{1}}$ and $\tan {{\theta }_{2}}$ are roots of quadratic obtained.
The sum of roots for the quadratic equation is given by,
The Sum of roots is given by $=\dfrac{-b}{a}$ in $a{{x}^{2}}+bx+c=0$
$\Rightarrow \tan {{\theta }_{1}}+\tan {{\theta }_{2}}=\dfrac{2hk}{{{h}^{2}}-{{a}^{2}}}$
And the product of roots is given by,
Product of roots is given by $\dfrac{c}{a}$ in $a{{x}^{2}}+bx+c=0$
$\Rightarrow \tan {{\theta }_{1}}\tan {{\theta }_{2}}=\dfrac{{{k}^{2}}-{{b}^{2}}}{{{h}^{2}}-{{a}^{2}}}$
We also know that,
$\Rightarrow {{\left( a+b \right)}^{2}}={{\left( a-b \right)}^{2}}+4ab$
Substituting the slopes, we get,
$\Rightarrow {{\left( \tan {{\theta }_{1}}-\tan {{\theta }_{2}} \right)}^{2}}={{\left( \tan {{\theta }_{1}}+\tan {{\theta }_{2}} \right)}^{2}}+4\tan {{\theta }_{1}}\tan {{\theta }_{2}}$
As $\tan {{\theta }_{1}}-\tan {{\theta }_{2}}=d$ (given)
$\Rightarrow {{d}^{2}}={{\left( \dfrac{2hk}{{{h}^{2}}-{{a}^{2}}} \right)}^{2}}+4\left( \dfrac{{{k}^{2}}-{{b}^{2}}}{{{h}^{2}}-{{a}^{2}}} \right)$
On further evaluating we get,
$\Rightarrow {{d}^{2}}=\dfrac{4{{h}^{2}}{{k}^{2}}}{{{\left( {{h}^{2}}-{{a}^{2}} \right)}^{2}}}+4\left( \dfrac{{{k}^{2}}-{{b}^{2}}}{{{h}^{2}}-{{a}^{2}}} \right)$
$\Rightarrow {{d}^{2}}=\dfrac{4{{h}^{2}}{{k}^{2}}-4\left( {{h}^{2}}-{{a}^{2}} \right)\left( {{k}^{2}}-{{b}^{2}} \right)}{{{\left( {{h}^{2}}-{{a}^{2}} \right)}^{2}}}$
$\Rightarrow {{d}^{2}}{{\left( {{h}^{2}}-{{a}^{2}} \right)}^{2}}=4{{h}^{2}}{{k}^{2}}+4\left( {{k}^{2}}-{{b}^{2}} \right)\left( {{h}^{2}}-{{a}^{2}} \right)$
$\Rightarrow {{d}^{2}}{{\left( {{h}^{2}}-{{a}^{2}} \right)}^{2}}=4\left( {{h}^{2}}{{k}^{2}}-{{h}^{2}}{{k}^{2}}+{{a}^{2}}{{k}^{2}}+{{h}^{2}}{{b}^{2}}-{{a}^{2}}{{b}^{2}} \right)$
On simplifying,
$\Rightarrow {{d}^{2}}{{\left( {{h}^{2}}-{{a}^{2}} \right)}^{2}}=4\left( {{a}^{2}}{{k}^{2}}+{{h}^{2}}{{b}^{2}}-{{a}^{2}}{{b}^{2}} \right)$
Replacing (h, k) by (x, y) to get locus: -
$\Rightarrow {{d}^{2}}{{\left( {{x}^{2}}-{{a}^{2}} \right)}^{2}}=4\left( {{x}^{2}}-{{a}^{2}} \right)\left( {{y}^{2}}-{{b}^{2}} \right)+4{{x}^{2}}{{y}^{2}}$
Now the required locus is ${{d}^{2}}{{\left( {{x}^{2}}-{{a}^{2}} \right)}^{2}}=4\left( {{x}^{2}}-{{a}^{2}} \right)\left( {{y}^{2}}-{{b}^{2}} \right)+4{{x}^{2}}{{y}^{2}}$
Note: Eliminating ${{\theta }_{1}}\And {{\theta }_{2}}$ by using the given relation ${{\tan }^{2}}{{\theta }_{1}}+{{\tan }^{2}}{{\theta }_{1}}=\lambda$ with the help of quadratic formed in ‘m’ i.e. $y=mx\pm \sqrt{{{a}^{2}}{{m}^{2}}+{{b}^{2}}}$ or ${{\left( y-mx \right)}^{2}}={{a}^{2}}{{m}^{2}}+{{b}^{2}}$ by using properties of roots is the key point of this equation.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

