
The sum of the length, breadth and height of a cuboid is 38 cm and the lengths of its diagonal is 22 cm. Then find the total surface area of the cuboid.
Answer
607.8k+ views
Hint:- Formula for diagonal of the cuboid is \[d = \sqrt {{a^2} + {b^2} + {c^2}} \] where d is the diagonal and a, b and are the length, breadth and height of the cuboid. And the total surface area of the cuboid is 2(ab + bc + ca). So, let us use the identity of \[{\left( {a + b + c} \right)^2}\] to find the total surface area of the cuboid.
Complete step-by-step solution -
Now as we can see from the above figure that diagonal of the cuboid ABCDHGFE is the line joining the points A and D.
And as we know that a, b, c are the length, breadth and height of any cuboid then its diagonal length must be equal to \[\sqrt {{a^2} + {b^2} + {c^2}} \].
So, let the length of be AB = DC = EF = HG = l cm
Breadth of the cuboid will be AE = DH = BF = CG = b cm
And, the height of the cuboid will be equal to AD = EH = BC = FG = h cm.
And it is given that the sum of the length, breadth and height of the cuboid is 38 cm.
So, l + b + h = 38 cm (1)
And, \[\sqrt {{l^2} + {b^2} + {h^2}} \] = 22 cm (2)
On squaring both sides of the above equation. We get,
\[{l^2} + {b^2} + {h^2} = 484\] (3)
Now as we know that the formula for total surface area is 2(ab + bc + ca). So, the total surface area of the above cuboid will be 2(lb + bh + hl).
So, to find the value of the total surface area of the cuboid we must use the identity of \[{\left( {a + b + c} \right)^2}\]. As we know that \[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ca} \right)\].
So, \[{\left( {l + b + h} \right)^2} = {l^2} + {b^2} + {h^2} + 2\left( {lb + bh + hl} \right)\] (4)
Now putting the value of \[l + b + h\] and \[{l^2} + {b^2} + {h^2}\] in equation 4. We get,
\[{\left( {38} \right)^2} = 484 + 2\left( {lb + bh + hl} \right)\]
Now solving the above equation. We get,
\[1444 = 484 + 2\left( {lb + bh + hl} \right)\]
Subtracting 484 to both sides of the above equation we get,
\[960 = 2\left( {lb + bh + hl} \right)\]
As RHS of the above equation is the formula for calculating the total surface area of a cuboid. So, LHS must be equal to the total surface area of the cuboid.
Hence, the total surface area of the cuboid is 960\[c{m^2}\].
Note:- The main diagonal of the cuboid is one which cuts the cuboid through the centre of it. And length if the diagonal is \[\sqrt {{l^2} + {b^2} + {h^2}} \] if l, b and h are the dimensions of the cuboid. So, we have to use the formula of calculate the value of \[{\left( {l + b + h} \right)^2}\] which is \[{\left( {l + b + h} \right)^2} = {l^2} + {b^2} + {h^2} + 2\left( {lb + bh + hl} \right)\]. So, from this identity we can easily get the total surface area of the cuboid value of \[l + b + h\] is given in the question and \[{l^2} + {b^2} + {h^2}\] is equal to the square of the diagonal which is also given.
Complete step-by-step solution -
Now as we can see from the above figure that diagonal of the cuboid ABCDHGFE is the line joining the points A and D.
And as we know that a, b, c are the length, breadth and height of any cuboid then its diagonal length must be equal to \[\sqrt {{a^2} + {b^2} + {c^2}} \].
So, let the length of be AB = DC = EF = HG = l cm
Breadth of the cuboid will be AE = DH = BF = CG = b cm
And, the height of the cuboid will be equal to AD = EH = BC = FG = h cm.
And it is given that the sum of the length, breadth and height of the cuboid is 38 cm.
So, l + b + h = 38 cm (1)
And, \[\sqrt {{l^2} + {b^2} + {h^2}} \] = 22 cm (2)
On squaring both sides of the above equation. We get,
\[{l^2} + {b^2} + {h^2} = 484\] (3)
Now as we know that the formula for total surface area is 2(ab + bc + ca). So, the total surface area of the above cuboid will be 2(lb + bh + hl).
So, to find the value of the total surface area of the cuboid we must use the identity of \[{\left( {a + b + c} \right)^2}\]. As we know that \[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ca} \right)\].
So, \[{\left( {l + b + h} \right)^2} = {l^2} + {b^2} + {h^2} + 2\left( {lb + bh + hl} \right)\] (4)
Now putting the value of \[l + b + h\] and \[{l^2} + {b^2} + {h^2}\] in equation 4. We get,
\[{\left( {38} \right)^2} = 484 + 2\left( {lb + bh + hl} \right)\]
Now solving the above equation. We get,
\[1444 = 484 + 2\left( {lb + bh + hl} \right)\]
Subtracting 484 to both sides of the above equation we get,
\[960 = 2\left( {lb + bh + hl} \right)\]
As RHS of the above equation is the formula for calculating the total surface area of a cuboid. So, LHS must be equal to the total surface area of the cuboid.
Hence, the total surface area of the cuboid is 960\[c{m^2}\].
Note:- The main diagonal of the cuboid is one which cuts the cuboid through the centre of it. And length if the diagonal is \[\sqrt {{l^2} + {b^2} + {h^2}} \] if l, b and h are the dimensions of the cuboid. So, we have to use the formula of calculate the value of \[{\left( {l + b + h} \right)^2}\] which is \[{\left( {l + b + h} \right)^2} = {l^2} + {b^2} + {h^2} + 2\left( {lb + bh + hl} \right)\]. So, from this identity we can easily get the total surface area of the cuboid value of \[l + b + h\] is given in the question and \[{l^2} + {b^2} + {h^2}\] is equal to the square of the diagonal which is also given.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who among the following opened first school for girls class 9 social science CBSE

What does the word meridian mean A New day B Midday class 9 social science CBSE

What is the full form of pH?

Write the 6 fundamental rights of India and explain in detail

Which places in India experience sunrise first and class 9 social science CBSE

