
The sum of coefficients of all odd degree terms in the expansion of ${\left( {x + \sqrt {{x^3} - 1} } \right)^5} + {\left( {x - \sqrt {{x^3} - 1} } \right)^5},{\text{ }}\left( {x > 1} \right)$ is
A) $1$
B) $2$
C) $ - 1$
D) $0$
Answer
566.1k+ views
Hint: We know how to expand a binomial expression like
${\left( {a + b} \right)^n} = {}^n{C_0}{a^n} + {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + {\text{ - - - - - - - - - - - - - - - - - - }}{}^n{C_n}{a^0}{b^n}$
Similarly, expand both the expression and add them , then we will find an expression from which you need to add the coefficient of all odd degree terms.
Complete step-by-step answer:
Here, according to question, we are given an expression
${\left( {x + \sqrt {{x^3} - 1} } \right)^5} + {\left( {x - \sqrt {{x^3} - 1} } \right)^5}$
So, let us use binomial expansion formula
${\left( {a + b} \right)^n} = {}^n{C_0}{a^n} + {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + {\text{ - - - - - - - - - - - - - - - - - - }}{}^n{C_n}{a^0}{b^n}$
So, let us first expand ${\left( {x + \sqrt {{x^3} - 1} } \right)^5}$
So, here $a = x{\text{ and }}b = \sqrt {{x^3} - 1} $.
So, ${\left( {x + \sqrt {{x^3} - 1} } \right)^5} = {x^5} + {}^5{C_1}{x^4}\sqrt {{x^3} - 1} + {}^5{C_2}{x^3}\left( {{x^3} - 1} \right) + {}^5{C_3}{x^2}\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} + {}^5{C_4}x{\left( {{x^3} - 1} \right)^2} + {}^5{C_5}{\left( {{x^3} - 1} \right)^2}\sqrt {{x^3} - 1} $
On further expansion we get,
$
{\left( {x + \sqrt {{x^3} - 1} } \right)^5} = {x^5} + \dfrac{{5!}}{{4!1!}}{x^4}\sqrt {{x^3} - 1} + \dfrac{{5!}}{{2!3!}}{x^3}\left( {{x^3} - 1} \right) + \dfrac{{5!}}{{2!3!}}{x^2}\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} + \dfrac{{5!}}{{4!1!}}x{\left( {{x^3} - 1} \right)^2} + \dfrac{{5!}}{{5!0!}}{\left( {{x^3} - 1} \right)^2}\sqrt {{x^3} - 1} \\
= {x^5} + 5{x^4}\sqrt {{x^3} - 1} + 10{x^6} - 10{x^3} + 10{x^5}\sqrt {{x^3} - 1} - 10{x^2}\sqrt {{x^3} - 1} + 5x\left( {{x^6} + 1 - 2{x^3}} \right) + \left( {{x^6} + 1 - 2{x^3}} \right)\sqrt {{x^3} - 1} {\text{ - - - - - - - - (1)}} \\
$
Now upon expanding ${\left( {x - \sqrt {{x^3} - 1} } \right)^5}$,
So, ${\left( {a - b} \right)^n}$. So, it has two cases.
If $n = {\text{even}}$, then
${a^n} - {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + {\text{ - - - - - - - - - - - - - - - - - - + }}{b^n}$
If $n = {\text{odd}}$, then
${a^n} - {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + {\text{ - - - - - - - - - - - - - - - - - - - }}{b^n}$
Here, $n = 5$, that is odd, so,
${\left( {x - \sqrt {{x^3} - 1} } \right)^5} = {x^5} - {}^5{C_1}{x^4}\sqrt {{x^3} - 1} + {}^5{C_2}{x^3}\left( {{x^3} - 1} \right) - {}^5{C_3}{x^2}\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} + {}^5{C_4}x{\left( {{x^3} - 1} \right)^2} - {}^5{C_5}{\left( {{x^3} - 1} \right)^2}\sqrt {{x^3} - 1} $
On further expanding,
$
{\left( {x - \sqrt {{x^3} - 1} } \right)^5} = {x^5} - \dfrac{{5!}}{{4!1!}}{x^4}\sqrt {{x^3} - 1} + \dfrac{{5!}}{{2!3!}}{x^3}\left( {{x^3} - 1} \right) - \dfrac{{5!}}{{2!3!}}{x^2}\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} + \dfrac{{5!}}{{4!1!}}x{\left( {{x^3} - 1} \right)^2} - \dfrac{{5!}}{{5!0!}}{\left( {{x^3} - 1} \right)^2}\sqrt {{x^3} - 1} \\
= {x^5} - 5{x^4}\sqrt {{x^3} - 1} + 10{x^6} - 10{x^3} - 10{x^5}\sqrt {{x^3} - 1} + 10{x^2}\sqrt {{x^3} - 1} + 5x\left( {{x^6} + 1 - 2{x^3}} \right) - \left( {{x^6} + 1 - 2{x^3}} \right)\sqrt {{x^3} - 1} {\text{ - - - - - - - - (2)}} \\
$
So, upon adding equation (1) and (2), we get
Let ${\left( {x + \sqrt {{x^3} - 1} } \right)^5} + {\left( {x - \sqrt {{x^3} - 1} } \right)^5} = S$
We will get
$
\Rightarrow S = \left( {2{x^5} + 20{x^6} - 20{x^3} + 10x\left( {{x^6} + 1 - 2{x^3}} \right)} \right) \\
\Rightarrow S = \left( {2{x^5} + 20{x^6} - 20{x^3} + 10{x^7} + 10x - 20{x^4}} \right) \\
$
Now, on rearranging,
$\Rightarrow$$S = 10x - 20{x^3} - 20{x^4} + 2{x^5} + 20{x^6} + 10{x^7}$
Now, sum of coefficient of odd power that means$ = 10 - 20 + 2 + 10 = 2$
So, our answer is $2$.
So, option B is the correct answer.
Note: We can do it by alternative method, that is, if ${\left( {A + B} \right)^n} + {\left( {A - B} \right)^n}$ is given, then its expansion will be
$2\left[ {{A^n} + {}^n{C_2}{A^{n - 2}}{B^2} + {}^n{C_4}{A^{n - 4}}{B^4}{\text{ - - - - - - - - }}} \right]$
We can directly use this formula and calculate the results.
${\left( {a + b} \right)^n} = {}^n{C_0}{a^n} + {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + {\text{ - - - - - - - - - - - - - - - - - - }}{}^n{C_n}{a^0}{b^n}$
Similarly, expand both the expression and add them , then we will find an expression from which you need to add the coefficient of all odd degree terms.
Complete step-by-step answer:
Here, according to question, we are given an expression
${\left( {x + \sqrt {{x^3} - 1} } \right)^5} + {\left( {x - \sqrt {{x^3} - 1} } \right)^5}$
So, let us use binomial expansion formula
${\left( {a + b} \right)^n} = {}^n{C_0}{a^n} + {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + {\text{ - - - - - - - - - - - - - - - - - - }}{}^n{C_n}{a^0}{b^n}$
So, let us first expand ${\left( {x + \sqrt {{x^3} - 1} } \right)^5}$
So, here $a = x{\text{ and }}b = \sqrt {{x^3} - 1} $.
So, ${\left( {x + \sqrt {{x^3} - 1} } \right)^5} = {x^5} + {}^5{C_1}{x^4}\sqrt {{x^3} - 1} + {}^5{C_2}{x^3}\left( {{x^3} - 1} \right) + {}^5{C_3}{x^2}\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} + {}^5{C_4}x{\left( {{x^3} - 1} \right)^2} + {}^5{C_5}{\left( {{x^3} - 1} \right)^2}\sqrt {{x^3} - 1} $
On further expansion we get,
$
{\left( {x + \sqrt {{x^3} - 1} } \right)^5} = {x^5} + \dfrac{{5!}}{{4!1!}}{x^4}\sqrt {{x^3} - 1} + \dfrac{{5!}}{{2!3!}}{x^3}\left( {{x^3} - 1} \right) + \dfrac{{5!}}{{2!3!}}{x^2}\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} + \dfrac{{5!}}{{4!1!}}x{\left( {{x^3} - 1} \right)^2} + \dfrac{{5!}}{{5!0!}}{\left( {{x^3} - 1} \right)^2}\sqrt {{x^3} - 1} \\
= {x^5} + 5{x^4}\sqrt {{x^3} - 1} + 10{x^6} - 10{x^3} + 10{x^5}\sqrt {{x^3} - 1} - 10{x^2}\sqrt {{x^3} - 1} + 5x\left( {{x^6} + 1 - 2{x^3}} \right) + \left( {{x^6} + 1 - 2{x^3}} \right)\sqrt {{x^3} - 1} {\text{ - - - - - - - - (1)}} \\
$
Now upon expanding ${\left( {x - \sqrt {{x^3} - 1} } \right)^5}$,
So, ${\left( {a - b} \right)^n}$. So, it has two cases.
If $n = {\text{even}}$, then
${a^n} - {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + {\text{ - - - - - - - - - - - - - - - - - - + }}{b^n}$
If $n = {\text{odd}}$, then
${a^n} - {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + {\text{ - - - - - - - - - - - - - - - - - - - }}{b^n}$
Here, $n = 5$, that is odd, so,
${\left( {x - \sqrt {{x^3} - 1} } \right)^5} = {x^5} - {}^5{C_1}{x^4}\sqrt {{x^3} - 1} + {}^5{C_2}{x^3}\left( {{x^3} - 1} \right) - {}^5{C_3}{x^2}\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} + {}^5{C_4}x{\left( {{x^3} - 1} \right)^2} - {}^5{C_5}{\left( {{x^3} - 1} \right)^2}\sqrt {{x^3} - 1} $
On further expanding,
$
{\left( {x - \sqrt {{x^3} - 1} } \right)^5} = {x^5} - \dfrac{{5!}}{{4!1!}}{x^4}\sqrt {{x^3} - 1} + \dfrac{{5!}}{{2!3!}}{x^3}\left( {{x^3} - 1} \right) - \dfrac{{5!}}{{2!3!}}{x^2}\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} + \dfrac{{5!}}{{4!1!}}x{\left( {{x^3} - 1} \right)^2} - \dfrac{{5!}}{{5!0!}}{\left( {{x^3} - 1} \right)^2}\sqrt {{x^3} - 1} \\
= {x^5} - 5{x^4}\sqrt {{x^3} - 1} + 10{x^6} - 10{x^3} - 10{x^5}\sqrt {{x^3} - 1} + 10{x^2}\sqrt {{x^3} - 1} + 5x\left( {{x^6} + 1 - 2{x^3}} \right) - \left( {{x^6} + 1 - 2{x^3}} \right)\sqrt {{x^3} - 1} {\text{ - - - - - - - - (2)}} \\
$
So, upon adding equation (1) and (2), we get
Let ${\left( {x + \sqrt {{x^3} - 1} } \right)^5} + {\left( {x - \sqrt {{x^3} - 1} } \right)^5} = S$
We will get
$
\Rightarrow S = \left( {2{x^5} + 20{x^6} - 20{x^3} + 10x\left( {{x^6} + 1 - 2{x^3}} \right)} \right) \\
\Rightarrow S = \left( {2{x^5} + 20{x^6} - 20{x^3} + 10{x^7} + 10x - 20{x^4}} \right) \\
$
Now, on rearranging,
$\Rightarrow$$S = 10x - 20{x^3} - 20{x^4} + 2{x^5} + 20{x^6} + 10{x^7}$
Now, sum of coefficient of odd power that means$ = 10 - 20 + 2 + 10 = 2$
So, our answer is $2$.
So, option B is the correct answer.
Note: We can do it by alternative method, that is, if ${\left( {A + B} \right)^n} + {\left( {A - B} \right)^n}$ is given, then its expansion will be
$2\left[ {{A^n} + {}^n{C_2}{A^{n - 2}}{B^2} + {}^n{C_4}{A^{n - 4}}{B^4}{\text{ - - - - - - - - }}} \right]$
We can directly use this formula and calculate the results.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

