
The sum of angles of a concave quadrilateral is _____.
Answer
423.3k+ views
Hint: The sum of the angles a concave quadrilateral can be found by dividing the quadrilateral into two triangles and using the angle sum property of a triangle that sum of all the angles of a triangles is always $180{}^\circ $.
Complete step-by-step answer:
We have to find the sum of angles of a concave quadrilateral.
Concave quadrilaterals are four sided polygons that have one interior angle greater than $180{}^\circ $.
We can identify concave quadrilaterals by using the fact that one of its diagonals lie partially or completely outside the quadrilateral.
Consider the below concave quadrilateral ABCD:
We can see that its one interior angle $\angle ADC$ is greater than $180{}^\circ $ and also its one diagonal AC lies completely outside the quadrilateral.
Thus, it is a concave quadrilateral we have to find the sum of its all the interior angles.
Let’s divide this concave quadrilateral into two triangles by drawing a line BD,
Now, two triangles are formed: $\Delta ABD\ and\ \Delta BDC$,
By angle sum property of a triangle, the sum of all the angles of a triangle is always $180{}^\circ $.
Using this property, we can write,
Sum of all the angles of $\Delta ABD=180{}^\circ $
$\Rightarrow \angle 1+\angle 2+\angle 5=180{}^\circ .........\left( 1 \right)$
And sum of all the angles of $\Delta BDC=180{}^\circ $
$\Rightarrow \angle 3+\angle 6+\angle 4=180{}^\circ .........\left( 2 \right)$
Adding equation (1) and (2), we will get,
$\begin{align}
& \Rightarrow \angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6=180{}^\circ +180{}^\circ \\
& \Rightarrow \angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6=360{}^\circ .................\left( 3 \right) \\
\end{align}$
From the diagram of concave quadrilateral above, we can observe that,
$\begin{align}
& \angle A\ of\ quadrilateral\ =\angle 1 \\
& \angle B\ of\ quadrilateral\ =\angle 2+\angle 3 \\
& \angle C\ of\ quadrilateral\ =\angle 4 \\
& \angle D\ of\ quadrilateral\ =\angle 5+\angle 6 \\
\end{align}$
Using the above relations,
On replacing $\angle 1\ with\ \angle A,\ \left( \angle 2+\angle 3 \right)\ with\ \angle B,\ \angle 4\ with\ \angle C\ and\ \left( \angle 5+\angle 6 \right)\ with\ \angle D$in equation (3), we will get,
$\Rightarrow \angle A+\angle B+\angle C+\angle D=360{}^\circ $
Hence the required sum of all the angles of a concave quadrilateral is $360{}^\circ $.
Note: As with any simple polygon, the sum of the interior angles of a concave polynomial is $180{}^\circ \times \left( n-2 \right)$ where $'n'$is the number of sides.
It is always possible to partition a concave polynomial into a set of convex polynomials.
Complete step-by-step answer:
We have to find the sum of angles of a concave quadrilateral.
Concave quadrilaterals are four sided polygons that have one interior angle greater than $180{}^\circ $.
We can identify concave quadrilaterals by using the fact that one of its diagonals lie partially or completely outside the quadrilateral.
Consider the below concave quadrilateral ABCD:

We can see that its one interior angle $\angle ADC$ is greater than $180{}^\circ $ and also its one diagonal AC lies completely outside the quadrilateral.
Thus, it is a concave quadrilateral we have to find the sum of its all the interior angles.
Let’s divide this concave quadrilateral into two triangles by drawing a line BD,
Now, two triangles are formed: $\Delta ABD\ and\ \Delta BDC$,
By angle sum property of a triangle, the sum of all the angles of a triangle is always $180{}^\circ $.
Using this property, we can write,
Sum of all the angles of $\Delta ABD=180{}^\circ $
$\Rightarrow \angle 1+\angle 2+\angle 5=180{}^\circ .........\left( 1 \right)$
And sum of all the angles of $\Delta BDC=180{}^\circ $
$\Rightarrow \angle 3+\angle 6+\angle 4=180{}^\circ .........\left( 2 \right)$
Adding equation (1) and (2), we will get,
$\begin{align}
& \Rightarrow \angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6=180{}^\circ +180{}^\circ \\
& \Rightarrow \angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6=360{}^\circ .................\left( 3 \right) \\
\end{align}$
From the diagram of concave quadrilateral above, we can observe that,
$\begin{align}
& \angle A\ of\ quadrilateral\ =\angle 1 \\
& \angle B\ of\ quadrilateral\ =\angle 2+\angle 3 \\
& \angle C\ of\ quadrilateral\ =\angle 4 \\
& \angle D\ of\ quadrilateral\ =\angle 5+\angle 6 \\
\end{align}$
Using the above relations,
On replacing $\angle 1\ with\ \angle A,\ \left( \angle 2+\angle 3 \right)\ with\ \angle B,\ \angle 4\ with\ \angle C\ and\ \left( \angle 5+\angle 6 \right)\ with\ \angle D$in equation (3), we will get,
$\Rightarrow \angle A+\angle B+\angle C+\angle D=360{}^\circ $
Hence the required sum of all the angles of a concave quadrilateral is $360{}^\circ $.
Note: As with any simple polygon, the sum of the interior angles of a concave polynomial is $180{}^\circ \times \left( n-2 \right)$ where $'n'$is the number of sides.
It is always possible to partition a concave polynomial into a set of convex polynomials.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
When Sambhaji Maharaj died a 11 February 1689 b 11 class 8 social science CBSE

Who is the author of Kadambari AKalidas B Panini C class 8 social science CBSE

Advantages and disadvantages of science

Write the smallest number divisible by both 306 and class 8 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

What led to the incident of Bloody Sunday in Russia class 8 social science CBSE
