   Question Answers

# The square of which of the following would be an odd number?A) 512B) 320C) 431D) 220  Hint: We need to know the unit digit or ones place value of the number to identify them as odd numbers or even numbers.
Unit’s places of odd numbers are: 1, 3, 5, 7, 9.
Number 1567829, unit place digit is 9. Thus, this number is odd.
Unit’s place of even numbers are: 0, 2, 4, 6, 8.
Number 7894, unit place digit is 4. Thus, this number is even.
Square of a number means the product of numbers twice to itself. For example:
Let the number a, square of a is equal to
$\mathop {\left( a \right)}\nolimits^2 = a \times a$
One’s place or unit place is the leftmost digit of a number.
The power cycle of a number: the numbers have cyclicity (repetition) of their units’ digits for increasing powers.
For example:
$\mathop 4\nolimits^1 {\text{ }} = {\text{ 4}},{\text{ unit digit = 4}} \\ \mathop 4\nolimits^2 {\text{ }} = {\text{ 16}},{\text{ unit digit = 6}} \\ \mathop 4\nolimits^3 {\text{ }} = {\text{ 64}},{\text{ unit digit = 4}} \\ \mathop 4\nolimits^4 {\text{ }} = 256,{\text{ unit digit = 6}} \\$
The power cycle of 4 = (4, 6)
The power cycle of 4 contains two numbers. Therefore, its cyclicity is 2.
Example question on use of cyclicity: find the unit place of $\mathop 4\nolimits^{251}$ .
Sol: The power cycle of 4 = (4, 6)
cyclicity of 4 = 2,
On dividing the power of 4 by cyclicity
251 divided by 2, remainder is 1.
$\mathop 4\nolimits^{251} {\text{ reduced to }}\mathop 4\nolimits^1$
$\mathop 4\nolimits^1 = 4$, unit place = 4

Step 1: Calculate unit digit of square of 512
square of 512 $\mathop { = {\text{ 512}}}\nolimits^2 \\ = 512 \times 512 \\$
Unit place of 512 = 2
The power cycle of 2:
$\mathop 2\nolimits^1 {\text{ }} = {\text{ }}2,{\text{ unit digit = 2}} \\ \mathop 2\nolimits^2 {\text{ }} = {\text{ }}4,{\text{ unit digit = 4}} \\ \mathop 2\nolimits^3 {\text{ }} = {\text{ }}8,{\text{ unit digit = 8}} \\ \mathop 2\nolimits^4 {\text{ }} = 16,{\text{ unit digit = 6}} \\ \mathop 2\nolimits^5 {\text{ }} = 32,{\text{ unit digit = 2}} \\$
Therefore, the power cycle of 2 = (2, 4, 6, 8)
The power cycle of 2 contains four numbers. Therefore, its cyclicity is 4.
Unit place of $\mathop {512}\nolimits^2 =$ unit place of $\mathop 2\nolimits^2$
Dividing the power of 512 by cyclicity of 2
2 is divided by 4, remainder = 2 ($\because$ cyclicity of 2 is 4)
$\because \mathop 2\nolimits^2$
Unit place of $\mathop 2\nolimits^2 = 4$
Unit place of $\mathop {512}\nolimits^2$= unit place of $\mathop 2\nolimits^2 = 4$
$\Rightarrow$ Unit place of $\mathop {512}\nolimits^2 = 4$
Thus, 512 is not an odd number.
Step 2: Calculate unit digit of square of 320
square of 320 $\mathop { = {\text{ 320}}}\nolimits^2 \\ = 320 \times 320 \\$
Unit place of 320 = 0
The power cycle of 0:
$\mathop 0\nolimits^1 {\text{ }} = {\text{ 0}},{\text{ unit digit = 0 }} \\ \mathop 0\nolimits^2 {\text{ }} = {\text{ 0}},{\text{ unit digit = 0}} \\ \mathop 0\nolimits^3 {\text{ }} = {\text{ 0}},{\text{ unit digit = 0}} \\$
The power cycle of 0 = (0)
The power cycle of 0 contains only one number, i.e. 0. Therefore, no matter what is the power of 0, the unit digit will always be 0.
Unit place of $\mathop {320}\nolimits^2$= unit place of $\mathop 0\nolimits^2 = 0$
$\Rightarrow$ Unit place of $\mathop {320}\nolimits^2 = 0$
Thus, 320 is not an odd number.
Step 3: Calculate unit digit of square of 431
square of 431 $\mathop { = {\text{ 431}}}\nolimits^2 \\ = 431 \times 431 \\$
Unit place of 431 = 1
The power cycle of 1:
$\mathop 1\nolimits^1 {\text{ }} = {\text{ 1}},{\text{ unit digit = 1 }} \\ \mathop 1\nolimits^2 {\text{ }} = {\text{ 1}},{\text{ unit digit = 1}} \\ \mathop 1\nolimits^3 {\text{ }} = {\text{ 1}},{\text{ unit digit = 1}} \\$
The power cycle of 1 = (1)
The power cycle of 1 contains only one number, i.e. 1. Therefore, no matter what is the power of 1, the unit digit will always be 1.
Unit place of $\mathop {431}\nolimits^2$= unit place of $\mathop 1\nolimits^2 = 1$
$\Rightarrow$ Unit place of $\mathop {431}\nolimits^2 = 1$
Thus, 431 is an odd number
Step 4: Calculate unit digit of square of 220
square of 220 $\mathop { = {\text{ 220}}}\nolimits^2 \\ = 220 \times 220 \\$
Unit place of 220 = 0
The power cycle of 0 = (0) (from step 2)
The power cycle of 0 contains only one number, i.e. 0. Therefore, no matter what is the power of 0, the unit digit will always be 0.
Unit place of $\mathop {220}\nolimits^2$= unit place of $\mathop 0\nolimits^2 = 0$
$\Rightarrow$ Unit place of $\mathop {220}\nolimits^2 = 0$
Thus, 220 is not an odd number.

Therefore, the square of 431 is an odd number. Thus, the correct option is (C).

Additional information: In the Indian numeral system, the place values of digits go in the sequence of Ones, Tens, Hundreds, Thousands, Ten Thousand, Lakhs, Ten Lakhs, Crores and so on.
For example: write the place value of all the digits of the number: 2,45,34,720.
 Place value Digit Ones 0 Tens 2 Hundreds 7 Thousands 4 Ten-thousands 3 Lakhs 5 Ten-lakhs 4 Crore 2

Note:
The power cycle and cyclicity, to find the unit place of number, are more useful for numbers with large powers.
Students can learn the power cycle of other numbers as well. Example given:
Power cycle of 3:
$\mathop 3\nolimits^1 {\text{ }} = {\text{ 3}},{\text{ unit digit = 3}} \\ \mathop 3\nolimits^2 {\text{ }} = {\text{ 9}},{\text{ unit digit = 9}} \\ \mathop 3\nolimits^3 {\text{ }} = {\text{ 27}},{\text{ unit digit = 7}} \\ \mathop 3\nolimits^4 {\text{ }} = {\text{ 81}},{\text{ unit digit = 1}} \\ \mathop 3\nolimits^5 {\text{ }} = 243,{\text{ unit digit = 3}} \\$
The power cycle of 3 = (3, 9, 7, 1)
The power cycle of 3 contains four numbers. Therefore, its cyclicity is 4.
Power cycle of 5:
$\mathop 5\nolimits^1 {\text{ }} = {\text{ 5}},{\text{ unit digit = 5}} \\ \mathop 5\nolimits^2 {\text{ }} = {\text{ 25}},{\text{ unit digit = 5}} \\ \mathop 5\nolimits^3 {\text{ }} = {\text{ 125}},{\text{ unit digit = 5}} \\ \mathop 5\nolimits^4 {\text{ }} = 625,{\text{ unit digit = 5}} \\$
The power cycle of 5 = ( 5 )
The power cycle of 5 contains only one number, i.e. 5. Therefore, no matter what is the power of 5, the unit digit will always be 5.
Odd numbers can be expressed in the form of $\left( {2n - 1} \right)$, where $n$is a natural number.
Example given: $431 = \left[ {2(216) - 1} \right]$
Even numbers can be expressed in the form of $\left( {2n} \right)$, where $n$is a natural number.
Example given: $320 = 2\left( {160} \right)$.
Area of Square Formula  Square Root of 289  CBSE Class 8 Maths Chapter 6 - Squares and Square Roots Formulas  Square Root of 576  Square Root of 144  To Measure the Volume of an Irregular Lamina Using Screw Gauge  The Idea of Time  How to Find Square Root of a Number  Measuring the Rate of Change of Motion  The Perimeter of Rectangle Formula  CBSE Class 8 Science Reaching The Age of Adolescence Worksheets  Important Questions for CBSE Class 8 English Honeydew Chapter 3 - Glimpses of the Past  Important Questions for CBSE Class 8 Science Chapter 10 - Reaching The Age of Adolescence  Important Questions for CBSE Class 11 Biology Chapter 8 - Cell The Unit of Life  Important Questions for CBSE Class 8 Social Science Our Past 3 Chapter 9 - The Making of the National Movement: 1870s -1947  Important Questions for CBSE Class 7 English An Alien Hand Chapter 8 - The Bear Story  Important Questions for CBSE Class 11 English Snapshots Chapter 1 - The Summer of the Beautiful White Horse  Important Questions for CBSE Class 8 Maths Chapter 6 - Squares and Square Roots  Important Questions for CBSE Class 6 Social Science The Earth Our Habitat Chapter 3 - Motions of the Earth  Important Questions for CBSE Class 7 English An Alien Hand Chapter 4 - The Cop and The Anthem  Previous Year Question Paper of CBSE Class 10 English  CBSE Class 12 Maths Question Paper 2020  CBSE Class 10 Maths Question Paper 2020  CBSE Class 10 Maths Question Paper 2017  Maths Question Paper for CBSE Class 10 - 2011  Maths Question Paper for CBSE Class 10 - 2008  Maths Question Paper for CBSE Class 10 - 2012  Maths Question Paper for CBSE Class 10 - 2009  Maths Question Paper for CBSE Class 10 - 2010  Maths Question Paper for CBSE Class 10 - 2007  NCERT Solutions for Class 8 Maths Chapter 6 Squares and Square Roots  Reaching The Age of Adolescence NCERT Solutions - Class 8 Science  Reaching The Age of Adolescence NCERT Solutions - Class 8 Science  RD Sharma Class 8 Solutions Chapter 3 - Square and Square Roots (Ex 3.8) Exercise 3.8  RD Sharma Class 8 Solutions Chapter 3 - Square and Square Roots (Ex 3.7) Exercise 3.7  RD Sharma Class 8 Solutions Chapter 3 - Square and Square Roots (Ex 3.5) Exercise 3.5  NCERT Exemplar for Class 8 Science Solutions Chapter 10 Reaching the Age of Adolescence  NCERT Exemplar for Class 8 Maths Solutions Chapter 3 Square-Square Root & Cube-Cube Root  NCERT Solutions for Class 11 Biology Chapter 8 Cell: The Unit of Life in Hindi  RD Sharma Class 8 Solutions Chapter 3 - Square and Square Roots (Ex 3.3) Exercise 3.3  