
The solution to the differential equation; $({x^2} - {y^2})dx + 2xydy = 0$, represents which curve-
(A). Line
(B). Circle
(C). Parabola
(D). Ellipse
Answer
610.5k+ views
Hint- First, find out the equation of $\dfrac{{dy}}{{dx}}$, and then simplify it to find out which curve it represents.
Complete step-by-step answer:
We have been given the differential equation, $({x^2} - {y^2})dx + 2xydy = 0 - (1)$
Solving the equation to find $\dfrac{{dy}}{{dx}}$:
$
({x^2} - {y^2})dx + 2xydy = 0 \\
\Rightarrow 2xydy = - ({x^2} - {y^2})dx \\
\Rightarrow 2xydy = ({y^2} - {x^2})dx \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{({y^2} - {x^2})}}{{2xy}} - (2) \\
$
Now, to find the solution of the given differential equation,
let $y = vx$
Differentiating w.r.t. x, we get-
$
\dfrac{{dy}}{{dx}} = x\dfrac{{dv}}{{dx}} + v\dfrac{{dx}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = x\dfrac{{dv}}{{dx}} + v \\
$
Putting value of $\dfrac{{dy}}{{dx}}$ and $y = vx$ in equation (2), we get-
\[
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{({y^2} - {x^2})}}{{2xy}} \\
\Rightarrow x\dfrac{{dv}}{{dx}} + v = \dfrac{{{{(xv)}^2} - {x^2}}}{{2x(xv)}} \\
\Rightarrow x\dfrac{{dv}}{{dx}} = \dfrac{{{x^2}{v^2} - {x^2}}}{{2{x^2}v}} - v \\
\Rightarrow x\dfrac{{dv}}{{dx}} = \dfrac{{{x^2}{v^2} - {x^2} - 2{x^2}{v^2}}}{{2{x^2}v}} \\
\Rightarrow x\dfrac{{dv}}{{dx}} = \dfrac{{ - {x^2}{v^2} - {x^2}}}{{2{x^2}v}} \\
\Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{1}{x}\left( {\dfrac{{ - {x^2}({v^2} + 1)}}{{2{x^2}v}}} \right) \\
\Rightarrow \dfrac{{dv}}{{dx}} = - \dfrac{1}{x}\left( {\dfrac{{{v^2} + 1}}{{2v}}} \right) \\
\Rightarrow \dfrac{{2vdv}}{{{v^2} + 1}} = - \dfrac{{dx}}{x} \\
\]
Integrating both sides, we get
\[
\int {\dfrac{{2vdv}}{{{v^2} + 1}}} = - \int {\dfrac{{dx}}{x}} \\
\int {\dfrac{{2vdv}}{{{v^2} + 1}}} = - \log |x| + C - (2) \\
\]
Now, let us put $t = {v^2} + 1$
Differentiating w.r.t v, we get-
$
\dfrac{{d({v^2} + 1)}}{{dv}} = \dfrac{{dt}}{{dv}} \\
2v = \dfrac{{dt}}{{dv}} \\
\Rightarrow dv = \dfrac{{dt}}{{2v}} \\
$
Now, from equation (2),
$
\int {\left( {\dfrac{{2vdt}}{{t.2v}}} \right)} = - \log |x| + c \\
\int {\dfrac{{dt}}{t} = - \log |x| + c} \\
\Rightarrow \log |t| = - \log |x| + c \\
\because t = {v^2} + 1 \\
\therefore \log |{v^2} + 1| = - \log |x| + c \\
\Rightarrow \log |{v^2} + 1| + \log |x| = c \\
\Rightarrow \log |x({v^2} + 1)| = c \\
$
Now, put $v = \dfrac{y}{x}$, we get-
$
\log |\dfrac{{{y^2} + {x^2}}}{x}| = \log c \\
\Rightarrow {y^2} + {x^2} = cx \\
\Rightarrow {x^2} + {y^2} = cx \\
\Rightarrow {x^2} + {y^2} - cx = 0 \\
$
Hence, the solution to the differential equation represents a circle with centre at c.
So, the correct option is (B).
Note – Whenever such types of questions appear, always try to convert the given equation in the form of dy/dx, and then solve it by assuming y = vx. So that, while integrating it won’t be so difficult. Once, done with the integration, check the equation is of which curve.
Complete step-by-step answer:
We have been given the differential equation, $({x^2} - {y^2})dx + 2xydy = 0 - (1)$
Solving the equation to find $\dfrac{{dy}}{{dx}}$:
$
({x^2} - {y^2})dx + 2xydy = 0 \\
\Rightarrow 2xydy = - ({x^2} - {y^2})dx \\
\Rightarrow 2xydy = ({y^2} - {x^2})dx \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{({y^2} - {x^2})}}{{2xy}} - (2) \\
$
Now, to find the solution of the given differential equation,
let $y = vx$
Differentiating w.r.t. x, we get-
$
\dfrac{{dy}}{{dx}} = x\dfrac{{dv}}{{dx}} + v\dfrac{{dx}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = x\dfrac{{dv}}{{dx}} + v \\
$
Putting value of $\dfrac{{dy}}{{dx}}$ and $y = vx$ in equation (2), we get-
\[
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{({y^2} - {x^2})}}{{2xy}} \\
\Rightarrow x\dfrac{{dv}}{{dx}} + v = \dfrac{{{{(xv)}^2} - {x^2}}}{{2x(xv)}} \\
\Rightarrow x\dfrac{{dv}}{{dx}} = \dfrac{{{x^2}{v^2} - {x^2}}}{{2{x^2}v}} - v \\
\Rightarrow x\dfrac{{dv}}{{dx}} = \dfrac{{{x^2}{v^2} - {x^2} - 2{x^2}{v^2}}}{{2{x^2}v}} \\
\Rightarrow x\dfrac{{dv}}{{dx}} = \dfrac{{ - {x^2}{v^2} - {x^2}}}{{2{x^2}v}} \\
\Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{1}{x}\left( {\dfrac{{ - {x^2}({v^2} + 1)}}{{2{x^2}v}}} \right) \\
\Rightarrow \dfrac{{dv}}{{dx}} = - \dfrac{1}{x}\left( {\dfrac{{{v^2} + 1}}{{2v}}} \right) \\
\Rightarrow \dfrac{{2vdv}}{{{v^2} + 1}} = - \dfrac{{dx}}{x} \\
\]
Integrating both sides, we get
\[
\int {\dfrac{{2vdv}}{{{v^2} + 1}}} = - \int {\dfrac{{dx}}{x}} \\
\int {\dfrac{{2vdv}}{{{v^2} + 1}}} = - \log |x| + C - (2) \\
\]
Now, let us put $t = {v^2} + 1$
Differentiating w.r.t v, we get-
$
\dfrac{{d({v^2} + 1)}}{{dv}} = \dfrac{{dt}}{{dv}} \\
2v = \dfrac{{dt}}{{dv}} \\
\Rightarrow dv = \dfrac{{dt}}{{2v}} \\
$
Now, from equation (2),
$
\int {\left( {\dfrac{{2vdt}}{{t.2v}}} \right)} = - \log |x| + c \\
\int {\dfrac{{dt}}{t} = - \log |x| + c} \\
\Rightarrow \log |t| = - \log |x| + c \\
\because t = {v^2} + 1 \\
\therefore \log |{v^2} + 1| = - \log |x| + c \\
\Rightarrow \log |{v^2} + 1| + \log |x| = c \\
\Rightarrow \log |x({v^2} + 1)| = c \\
$
Now, put $v = \dfrac{y}{x}$, we get-
$
\log |\dfrac{{{y^2} + {x^2}}}{x}| = \log c \\
\Rightarrow {y^2} + {x^2} = cx \\
\Rightarrow {x^2} + {y^2} = cx \\
\Rightarrow {x^2} + {y^2} - cx = 0 \\
$
Hence, the solution to the differential equation represents a circle with centre at c.
So, the correct option is (B).
Note – Whenever such types of questions appear, always try to convert the given equation in the form of dy/dx, and then solve it by assuming y = vx. So that, while integrating it won’t be so difficult. Once, done with the integration, check the equation is of which curve.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

