
The solution of the differential equation $\dfrac{{dy}}{{dx}} + \dfrac{y}{2}\sec x = \dfrac{{\tan x}}{{2y}}$, where $0 \leqslant x \leqslant \dfrac{\pi }{2}$ and $y\left( 0 \right) = 1$, is given by:
A. ${y^2} = 1 + \dfrac{x}{{\sec x + \tan x}}$
B. $y = 1 + \dfrac{x}{{\sec x + \tan x}}$
C. $y = 1 - \dfrac{x}{{\sec x + \tan x}}$
D. ${y^2} = 1 - \dfrac{x}{{\sec x + \tan x}}$
Answer
577.8k+ views
Hint:
The given equation is a nonlinear differential equation. We will convert it into linear differential equation by dividing the equation by $y$. Then, make necessary substitution and compare with the standard linear differential equation. Find the integrating factor and apply initial value to get the value of $c$.
Complete step by step solution:
Given differential equation is a nonlinear equation.
$\dfrac{{dy}}{{dx}} + \dfrac{y}{2}\sec x = \dfrac{{\tan x}}{{2y}}$
Divide the equation by $y$ to convert it into a differential equation.
$\dfrac{{ydy}}{{dx}} + \dfrac{{{y^2}}}{2}\sec x = \dfrac{{\tan x}}{2}$
Let $v = {y^2}$, then
$
\Rightarrow \dfrac{{dv}}{{dx}} = 2y\dfrac{{dy}}{{dx}} \\
\Rightarrow y\dfrac{{dy}}{{dx}} = \dfrac{1}{2}\dfrac{{dv}}{{dx}} \\
$
On substituting the values, we will get,
$
\dfrac{1}{2}\dfrac{{dv}}{{dx}} + \dfrac{v}{2}\sec x = \dfrac{{\tan x}}{2} \\
\Rightarrow \dfrac{{dv}}{{dx}} + v\sec x = \tan x \\
$
Here, we can observe that the given differential equation is of the type linear in $y$
That is the equation $\dfrac{{dv}}{{dx}} + v\sec x = \tan x$ is of the form $\dfrac{{dy}}{{dx}} + Py = Q$, where $P = \sec x$ and $Q = \tan x$
Then, integrating factor is given by \[{e^{\int {P\left( x \right)dx} }}\] which is \[{\text{IF}} = {e^{\int {\sec xdx} }}\]
We know that $\int {\sec xdx = \ln \left| {\tan x + \sec x} \right|} $
This implies, \[{e^{\ln \left| {\tan x + \sec x} \right|}} = \tan x + \sec x\]
We can solve the value of $v$ using the formula,
\[v = \dfrac{1}{{{\text{IF}}}}\int {{\text{IF}} \times Q\left( x \right) + c} \]
On substituting the values, we will get,
\[v = \dfrac{1}{{\left( {\tan x + \sec x} \right)}}\int {\tan x\left( {\tan x + \sec x} \right) + c} \]
Now, we will solve the integration part and then substitute its value.
\[\int {\tan x\left( {\tan x + \sec x} \right) = \int {\left( {{{\tan }^2}x + \tan x\sec x} \right)dx} } \]
Also, \[{\tan ^2}x = {\sec ^2}x - 1\]
Then, the value of integral is
$
\Rightarrow \int {\left( {{{\sec }^2}x - 1 + \tan x\sec x} \right)dx} \\
\Rightarrow \int {{{\sec }^2}x - \int {1dx + \int {\tan x\sec xdx} } } \\
\Rightarrow \tan x - x + \sec x \\
$
Hence, the value of $v$ becomes,
\[v = \dfrac{{\tan x + \sec x - x}}{{\left( {\tan x + \sec x} \right)}} + c\]
Put $v - {y^2}$
$
{y^2} = \dfrac{{\tan x + \sec x - x}}{{\left( {\tan x + \sec x} \right)}} + c \\
\Rightarrow {y^2} = 1 - \dfrac{x}{{\tan x + \sec x}} + c \\
$
Put the initial condition $y\left( 0 \right) = 1$
$
1 = 1 - 0 + c \\
\Rightarrow c = 0 \\
$
Therefore,
\[{y^2} = 1 - \dfrac{x}{{\tan x + \sec x}}\]
Hence, option D is correct.
Note:
The differential equation of the form \[\dfrac{{dy}}{{dx}} + yP\left( x \right) = {y^n}Q\left( x \right)\] can be converted into linear form by dividing the equation by ${y^n}$ and then substituting ${y^{1 - n}}$ and then dividing by $1 - n$. Also, students must do the integration correctly.
The given equation is a nonlinear differential equation. We will convert it into linear differential equation by dividing the equation by $y$. Then, make necessary substitution and compare with the standard linear differential equation. Find the integrating factor and apply initial value to get the value of $c$.
Complete step by step solution:
Given differential equation is a nonlinear equation.
$\dfrac{{dy}}{{dx}} + \dfrac{y}{2}\sec x = \dfrac{{\tan x}}{{2y}}$
Divide the equation by $y$ to convert it into a differential equation.
$\dfrac{{ydy}}{{dx}} + \dfrac{{{y^2}}}{2}\sec x = \dfrac{{\tan x}}{2}$
Let $v = {y^2}$, then
$
\Rightarrow \dfrac{{dv}}{{dx}} = 2y\dfrac{{dy}}{{dx}} \\
\Rightarrow y\dfrac{{dy}}{{dx}} = \dfrac{1}{2}\dfrac{{dv}}{{dx}} \\
$
On substituting the values, we will get,
$
\dfrac{1}{2}\dfrac{{dv}}{{dx}} + \dfrac{v}{2}\sec x = \dfrac{{\tan x}}{2} \\
\Rightarrow \dfrac{{dv}}{{dx}} + v\sec x = \tan x \\
$
Here, we can observe that the given differential equation is of the type linear in $y$
That is the equation $\dfrac{{dv}}{{dx}} + v\sec x = \tan x$ is of the form $\dfrac{{dy}}{{dx}} + Py = Q$, where $P = \sec x$ and $Q = \tan x$
Then, integrating factor is given by \[{e^{\int {P\left( x \right)dx} }}\] which is \[{\text{IF}} = {e^{\int {\sec xdx} }}\]
We know that $\int {\sec xdx = \ln \left| {\tan x + \sec x} \right|} $
This implies, \[{e^{\ln \left| {\tan x + \sec x} \right|}} = \tan x + \sec x\]
We can solve the value of $v$ using the formula,
\[v = \dfrac{1}{{{\text{IF}}}}\int {{\text{IF}} \times Q\left( x \right) + c} \]
On substituting the values, we will get,
\[v = \dfrac{1}{{\left( {\tan x + \sec x} \right)}}\int {\tan x\left( {\tan x + \sec x} \right) + c} \]
Now, we will solve the integration part and then substitute its value.
\[\int {\tan x\left( {\tan x + \sec x} \right) = \int {\left( {{{\tan }^2}x + \tan x\sec x} \right)dx} } \]
Also, \[{\tan ^2}x = {\sec ^2}x - 1\]
Then, the value of integral is
$
\Rightarrow \int {\left( {{{\sec }^2}x - 1 + \tan x\sec x} \right)dx} \\
\Rightarrow \int {{{\sec }^2}x - \int {1dx + \int {\tan x\sec xdx} } } \\
\Rightarrow \tan x - x + \sec x \\
$
Hence, the value of $v$ becomes,
\[v = \dfrac{{\tan x + \sec x - x}}{{\left( {\tan x + \sec x} \right)}} + c\]
Put $v - {y^2}$
$
{y^2} = \dfrac{{\tan x + \sec x - x}}{{\left( {\tan x + \sec x} \right)}} + c \\
\Rightarrow {y^2} = 1 - \dfrac{x}{{\tan x + \sec x}} + c \\
$
Put the initial condition $y\left( 0 \right) = 1$
$
1 = 1 - 0 + c \\
\Rightarrow c = 0 \\
$
Therefore,
\[{y^2} = 1 - \dfrac{x}{{\tan x + \sec x}}\]
Hence, option D is correct.
Note:
The differential equation of the form \[\dfrac{{dy}}{{dx}} + yP\left( x \right) = {y^n}Q\left( x \right)\] can be converted into linear form by dividing the equation by ${y^n}$ and then substituting ${y^{1 - n}}$ and then dividing by $1 - n$. Also, students must do the integration correctly.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

