
The slant height of a cone is 13 cm and radius is 5 cm, then its height is-
A) 5 cm
B) 22 cm
C) 12 cm
D) 18 cm
Answer
518.7k+ views
Hint: Use the formula $l = \sqrt {{r^2} + {h^2}} $, where $l = $ slant height of the cone, $r = $ radius of the cone, $h = $height of the cone.
Complete step-by-step answer:
We have been given in the question that-
$l = $ slant height of the cone = 13 cm
$r = $ radius of the cone = 5 cm.
Let us refer to the figure for better understanding, ABC is a cone having l as the slant height, h as the altitude and r as the radius.
Now, using the formula, $l = \sqrt {{r^2} + {h^2}} $, where $l = $ slant height of the cone, $r = $ radius of the cone, $h = $ height of the cone.
$l = \sqrt {{r^2} + {h^2}} $
Squaring both sides-
$
l = \sqrt {{r^2} + {h^2}} \\
\Rightarrow {l^2} = {r^2} + {h^2} \\
\Rightarrow {h^2} = {l^2} - {r^2} \\
\Rightarrow h = \sqrt {{l^2} - {r^2}} \\
$
Putting the value of $l = 13cm,r = 5cm$, we get-
$h = \sqrt {{{13}^2} - {5^2}} = \sqrt {169 - 25} = \sqrt {144} = 12cm$
Hence, the height of the cone is 12 cm.
So, the correct option is C. 12 cm.
Note: Whenever such types of questions appear, then write the things given in the question. Then, use the standard formula $l = \sqrt {{r^2} + {h^2}} $, and then by squaring both sides, we will get $h = \sqrt {{l^2} - {r^2}} $. Put the values of $l = 13cm,r = 5cm$, and obtain the value of height h of the cone.
Complete step-by-step answer:

We have been given in the question that-
$l = $ slant height of the cone = 13 cm
$r = $ radius of the cone = 5 cm.
Let us refer to the figure for better understanding, ABC is a cone having l as the slant height, h as the altitude and r as the radius.
Now, using the formula, $l = \sqrt {{r^2} + {h^2}} $, where $l = $ slant height of the cone, $r = $ radius of the cone, $h = $ height of the cone.
$l = \sqrt {{r^2} + {h^2}} $
Squaring both sides-
$
l = \sqrt {{r^2} + {h^2}} \\
\Rightarrow {l^2} = {r^2} + {h^2} \\
\Rightarrow {h^2} = {l^2} - {r^2} \\
\Rightarrow h = \sqrt {{l^2} - {r^2}} \\
$
Putting the value of $l = 13cm,r = 5cm$, we get-
$h = \sqrt {{{13}^2} - {5^2}} = \sqrt {169 - 25} = \sqrt {144} = 12cm$
Hence, the height of the cone is 12 cm.
So, the correct option is C. 12 cm.
Note: Whenever such types of questions appear, then write the things given in the question. Then, use the standard formula $l = \sqrt {{r^2} + {h^2}} $, and then by squaring both sides, we will get $h = \sqrt {{l^2} - {r^2}} $. Put the values of $l = 13cm,r = 5cm$, and obtain the value of height h of the cone.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
The singular of lice is louse A Yes B No class 8 english CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

How many ounces are in 500 mL class 8 maths CBSE

Advantages and disadvantages of science

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

What led to the incident of Bloody Sunday in Russia class 8 social science CBSE
