
The relation between electric field E and magnetic field H in electromagnetic wave is:
A. \[E = H\]
B. \[E = \dfrac{{{\mu _0}}}{{{\varepsilon _0}}}H\]
C. \[E = \sqrt {\dfrac{{{\mu _0}}}{{{\varepsilon _0}}}} H\]
D. \[E = \sqrt {\dfrac{{{\varepsilon _0}}}{{{\mu _0}}}} H\]
Answer
538.2k+ views
Hint:Recall Maxwell's equation and calculate the curl of the electric field.Express the solutions of differential equations of electric field and magnetic field and substitute it into the Maxwell’s equation you obtained after taking the curl. We know that speed of light is expressed as, \[c = \dfrac{\omega }{k} = \dfrac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}\].
Complete step by step answer:
To answer this question, we can derive the relation between electric field and magnetic field of the electromagnetic wave using Maxwell’s equation. We will start with one of Maxwell’s equation,
\[\nabla \times E = - {\mu _0}\dfrac{{\partial B}}{{\partial t}}\] …… (1)
We assume the electric field is along the y-axis and magnetic field is along the z-axis. Since electric field and magnetic field are only function of distance x and time x, we can write the equation for electric field and magnetic field as follows,
\[\vec E\left( {x,t} \right) = E\left( {x,t} \right)\hat j\] and, \[\vec B\left( {x,t} \right) = B\left( {x,t} \right)\hat k\] …… (2)
We take the curl of electric field as follows,
\[\nabla \times \vec E\left( {x,t} \right) = \left[ {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
{\dfrac{\partial }{{\partial x}}}&{\dfrac{\partial }{{\partial y}}}&{\dfrac{\partial }{{\partial z}}} \\
0&{E\left( {x,t} \right)}&0
\end{array}} \right]\]
\[ \Rightarrow \nabla \times \vec E\left( {x,t} \right) = - \dfrac{{\partial E}}{{\partial x}}\hat k\] …… (3)
From equation (1) and (2), we can write,
\[\dfrac{{\partial E}}{{\partial x}} = - {\mu _0}\dfrac{{\partial B}}{{\partial t}}\] …… (4)
We have the solutions of differential equations of electric field and magnetic field is,
\[E\left( {x,t} \right) = {E_{\max }}\cos \left( {kx - \omega t} \right)\] …… (5)
And,
\[B\left( {x,t} \right) = {B_{\max }}\cos \left( {kx - \omega t} \right)\] …… (6)
Substituting equation (5) and (6) in equation (4), we have,
\[\dfrac{\partial }{{\partial x}}\left( {{E_{\max }}\cos \left( {kx - \omega t} \right)} \right) = - {\mu _0}\dfrac{\partial }{{\partial t}}\left( {{B_{\max }}\cos \left( {kx - \omega t} \right)} \right)\]
\[ \Rightarrow {E_{\max }}\cos \left( {kx - \omega t} \right)\left( k \right) = - {\mu _0}{B_{\max }}\cos \left( {kx - \omega t} \right)\left( { - \omega } \right)\]
\[ \Rightarrow k{E_{\max }} = \omega {\mu _0}{B_{\max }}\]
\[ \Rightarrow {E_{\max }} = \dfrac{\omega }{k}{\mu _0}{B_{\max }}\]
We know that, the speed of light is expressed as,
\[c = \dfrac{\omega }{k} = \dfrac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}\]
Therefore, the above equation becomes,
\[E = \dfrac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}{\mu _0}B\]
\[ \therefore E = \sqrt {\dfrac{{{\mu _0}}}{{{\varepsilon _0}}}} B\]
So, the correct answer is option C.
Note:We can also answer this question by referring to the Poynting vector or energy transferred by the electromagnetic wave. The energy density of the electromagnetic wave is,
\[S = \dfrac{{{\mu _0}B_{\max }^2}}{2} = \dfrac{{{\varepsilon _0}E_{\max }^2}}{2}\]
\[ \Rightarrow \dfrac{{{E_{\max }}}}{{{B_{\max }}}} = \sqrt {\dfrac{{{\mu _0}}}{{{\varepsilon _0}}}} \]
Electric fields and magnetic fields are perpendicular to each other only for electromagnetic waves.
Complete step by step answer:
To answer this question, we can derive the relation between electric field and magnetic field of the electromagnetic wave using Maxwell’s equation. We will start with one of Maxwell’s equation,
\[\nabla \times E = - {\mu _0}\dfrac{{\partial B}}{{\partial t}}\] …… (1)
We assume the electric field is along the y-axis and magnetic field is along the z-axis. Since electric field and magnetic field are only function of distance x and time x, we can write the equation for electric field and magnetic field as follows,
\[\vec E\left( {x,t} \right) = E\left( {x,t} \right)\hat j\] and, \[\vec B\left( {x,t} \right) = B\left( {x,t} \right)\hat k\] …… (2)
We take the curl of electric field as follows,
\[\nabla \times \vec E\left( {x,t} \right) = \left[ {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
{\dfrac{\partial }{{\partial x}}}&{\dfrac{\partial }{{\partial y}}}&{\dfrac{\partial }{{\partial z}}} \\
0&{E\left( {x,t} \right)}&0
\end{array}} \right]\]
\[ \Rightarrow \nabla \times \vec E\left( {x,t} \right) = - \dfrac{{\partial E}}{{\partial x}}\hat k\] …… (3)
From equation (1) and (2), we can write,
\[\dfrac{{\partial E}}{{\partial x}} = - {\mu _0}\dfrac{{\partial B}}{{\partial t}}\] …… (4)
We have the solutions of differential equations of electric field and magnetic field is,
\[E\left( {x,t} \right) = {E_{\max }}\cos \left( {kx - \omega t} \right)\] …… (5)
And,
\[B\left( {x,t} \right) = {B_{\max }}\cos \left( {kx - \omega t} \right)\] …… (6)
Substituting equation (5) and (6) in equation (4), we have,
\[\dfrac{\partial }{{\partial x}}\left( {{E_{\max }}\cos \left( {kx - \omega t} \right)} \right) = - {\mu _0}\dfrac{\partial }{{\partial t}}\left( {{B_{\max }}\cos \left( {kx - \omega t} \right)} \right)\]
\[ \Rightarrow {E_{\max }}\cos \left( {kx - \omega t} \right)\left( k \right) = - {\mu _0}{B_{\max }}\cos \left( {kx - \omega t} \right)\left( { - \omega } \right)\]
\[ \Rightarrow k{E_{\max }} = \omega {\mu _0}{B_{\max }}\]
\[ \Rightarrow {E_{\max }} = \dfrac{\omega }{k}{\mu _0}{B_{\max }}\]
We know that, the speed of light is expressed as,
\[c = \dfrac{\omega }{k} = \dfrac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}\]
Therefore, the above equation becomes,
\[E = \dfrac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}{\mu _0}B\]
\[ \therefore E = \sqrt {\dfrac{{{\mu _0}}}{{{\varepsilon _0}}}} B\]
So, the correct answer is option C.
Note:We can also answer this question by referring to the Poynting vector or energy transferred by the electromagnetic wave. The energy density of the electromagnetic wave is,
\[S = \dfrac{{{\mu _0}B_{\max }^2}}{2} = \dfrac{{{\varepsilon _0}E_{\max }^2}}{2}\]
\[ \Rightarrow \dfrac{{{E_{\max }}}}{{{B_{\max }}}} = \sqrt {\dfrac{{{\mu _0}}}{{{\varepsilon _0}}}} \]
Electric fields and magnetic fields are perpendicular to each other only for electromagnetic waves.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

