
The relation between electric field E and magnetic field H in electromagnetic wave is:
A. \[E = H\]
B. \[E = \dfrac{{{\mu _0}}}{{{\varepsilon _0}}}H\]
C. \[E = \sqrt {\dfrac{{{\mu _0}}}{{{\varepsilon _0}}}} H\]
D. \[E = \sqrt {\dfrac{{{\varepsilon _0}}}{{{\mu _0}}}} H\]
Answer
455.1k+ views
Hint:Recall Maxwell's equation and calculate the curl of the electric field.Express the solutions of differential equations of electric field and magnetic field and substitute it into the Maxwell’s equation you obtained after taking the curl. We know that speed of light is expressed as, \[c = \dfrac{\omega }{k} = \dfrac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}\].
Complete step by step answer:
To answer this question, we can derive the relation between electric field and magnetic field of the electromagnetic wave using Maxwell’s equation. We will start with one of Maxwell’s equation,
\[\nabla \times E = - {\mu _0}\dfrac{{\partial B}}{{\partial t}}\] …… (1)
We assume the electric field is along the y-axis and magnetic field is along the z-axis. Since electric field and magnetic field are only function of distance x and time x, we can write the equation for electric field and magnetic field as follows,
\[\vec E\left( {x,t} \right) = E\left( {x,t} \right)\hat j\] and, \[\vec B\left( {x,t} \right) = B\left( {x,t} \right)\hat k\] …… (2)
We take the curl of electric field as follows,
\[\nabla \times \vec E\left( {x,t} \right) = \left[ {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
{\dfrac{\partial }{{\partial x}}}&{\dfrac{\partial }{{\partial y}}}&{\dfrac{\partial }{{\partial z}}} \\
0&{E\left( {x,t} \right)}&0
\end{array}} \right]\]
\[ \Rightarrow \nabla \times \vec E\left( {x,t} \right) = - \dfrac{{\partial E}}{{\partial x}}\hat k\] …… (3)
From equation (1) and (2), we can write,
\[\dfrac{{\partial E}}{{\partial x}} = - {\mu _0}\dfrac{{\partial B}}{{\partial t}}\] …… (4)
We have the solutions of differential equations of electric field and magnetic field is,
\[E\left( {x,t} \right) = {E_{\max }}\cos \left( {kx - \omega t} \right)\] …… (5)
And,
\[B\left( {x,t} \right) = {B_{\max }}\cos \left( {kx - \omega t} \right)\] …… (6)
Substituting equation (5) and (6) in equation (4), we have,
\[\dfrac{\partial }{{\partial x}}\left( {{E_{\max }}\cos \left( {kx - \omega t} \right)} \right) = - {\mu _0}\dfrac{\partial }{{\partial t}}\left( {{B_{\max }}\cos \left( {kx - \omega t} \right)} \right)\]
\[ \Rightarrow {E_{\max }}\cos \left( {kx - \omega t} \right)\left( k \right) = - {\mu _0}{B_{\max }}\cos \left( {kx - \omega t} \right)\left( { - \omega } \right)\]
\[ \Rightarrow k{E_{\max }} = \omega {\mu _0}{B_{\max }}\]
\[ \Rightarrow {E_{\max }} = \dfrac{\omega }{k}{\mu _0}{B_{\max }}\]
We know that, the speed of light is expressed as,
\[c = \dfrac{\omega }{k} = \dfrac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}\]
Therefore, the above equation becomes,
\[E = \dfrac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}{\mu _0}B\]
\[ \therefore E = \sqrt {\dfrac{{{\mu _0}}}{{{\varepsilon _0}}}} B\]
So, the correct answer is option C.
Note:We can also answer this question by referring to the Poynting vector or energy transferred by the electromagnetic wave. The energy density of the electromagnetic wave is,
\[S = \dfrac{{{\mu _0}B_{\max }^2}}{2} = \dfrac{{{\varepsilon _0}E_{\max }^2}}{2}\]
\[ \Rightarrow \dfrac{{{E_{\max }}}}{{{B_{\max }}}} = \sqrt {\dfrac{{{\mu _0}}}{{{\varepsilon _0}}}} \]
Electric fields and magnetic fields are perpendicular to each other only for electromagnetic waves.
Complete step by step answer:
To answer this question, we can derive the relation between electric field and magnetic field of the electromagnetic wave using Maxwell’s equation. We will start with one of Maxwell’s equation,
\[\nabla \times E = - {\mu _0}\dfrac{{\partial B}}{{\partial t}}\] …… (1)
We assume the electric field is along the y-axis and magnetic field is along the z-axis. Since electric field and magnetic field are only function of distance x and time x, we can write the equation for electric field and magnetic field as follows,
\[\vec E\left( {x,t} \right) = E\left( {x,t} \right)\hat j\] and, \[\vec B\left( {x,t} \right) = B\left( {x,t} \right)\hat k\] …… (2)
We take the curl of electric field as follows,
\[\nabla \times \vec E\left( {x,t} \right) = \left[ {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
{\dfrac{\partial }{{\partial x}}}&{\dfrac{\partial }{{\partial y}}}&{\dfrac{\partial }{{\partial z}}} \\
0&{E\left( {x,t} \right)}&0
\end{array}} \right]\]
\[ \Rightarrow \nabla \times \vec E\left( {x,t} \right) = - \dfrac{{\partial E}}{{\partial x}}\hat k\] …… (3)
From equation (1) and (2), we can write,
\[\dfrac{{\partial E}}{{\partial x}} = - {\mu _0}\dfrac{{\partial B}}{{\partial t}}\] …… (4)
We have the solutions of differential equations of electric field and magnetic field is,
\[E\left( {x,t} \right) = {E_{\max }}\cos \left( {kx - \omega t} \right)\] …… (5)
And,
\[B\left( {x,t} \right) = {B_{\max }}\cos \left( {kx - \omega t} \right)\] …… (6)
Substituting equation (5) and (6) in equation (4), we have,
\[\dfrac{\partial }{{\partial x}}\left( {{E_{\max }}\cos \left( {kx - \omega t} \right)} \right) = - {\mu _0}\dfrac{\partial }{{\partial t}}\left( {{B_{\max }}\cos \left( {kx - \omega t} \right)} \right)\]
\[ \Rightarrow {E_{\max }}\cos \left( {kx - \omega t} \right)\left( k \right) = - {\mu _0}{B_{\max }}\cos \left( {kx - \omega t} \right)\left( { - \omega } \right)\]
\[ \Rightarrow k{E_{\max }} = \omega {\mu _0}{B_{\max }}\]
\[ \Rightarrow {E_{\max }} = \dfrac{\omega }{k}{\mu _0}{B_{\max }}\]
We know that, the speed of light is expressed as,
\[c = \dfrac{\omega }{k} = \dfrac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}\]
Therefore, the above equation becomes,
\[E = \dfrac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}{\mu _0}B\]
\[ \therefore E = \sqrt {\dfrac{{{\mu _0}}}{{{\varepsilon _0}}}} B\]
So, the correct answer is option C.
Note:We can also answer this question by referring to the Poynting vector or energy transferred by the electromagnetic wave. The energy density of the electromagnetic wave is,
\[S = \dfrac{{{\mu _0}B_{\max }^2}}{2} = \dfrac{{{\varepsilon _0}E_{\max }^2}}{2}\]
\[ \Rightarrow \dfrac{{{E_{\max }}}}{{{B_{\max }}}} = \sqrt {\dfrac{{{\mu _0}}}{{{\varepsilon _0}}}} \]
Electric fields and magnetic fields are perpendicular to each other only for electromagnetic waves.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What I want should not be confused with total inactivity class 12 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
