
The reading of the voltmeter is
Answer
572.7k+ views
Hint: As we know when the resistors are connected into series, the same current flows through them, but when the resistors are connected into parallel, different values of current flow through them as the potential drop across each resistor is same when the resistors are connected in parallel.
Complete step by step answer:
We all have studied to know that if two resistors $R_1$ and $R_2$ are connected in parallel, then the net resistance $R_p$ is given by the formula:
$ \Rightarrow {R_p} = \dfrac{{{R_1}{R_2}}}{{{R_1} + {R_2}}}$
As we can see in the given problem, here 300 ohms and 600-ohm voltmeter are connected in parallel, so the net resistance can be found out by substituting $R_1=600$ ohm and $R_2=300$ ohm to find $R_p$. Therefore, it becomes,
$ \Rightarrow {R_p} = \dfrac{{600\Omega \times 300\Omega }}{{600\Omega + 300\Omega }}$
$ \Rightarrow {R_p} = \dfrac{{300 \times 6}}{9}$
As we will simplify the above equation, then it will become,
$\therefore {R_p} = 200\Omega $
We all have studied to know that if three resistors $R_1$ and $R_2$ and $R_p$ are connected in series, then the net resistance $R_s$ is given by the formula:
${R_s} = {R_1} + {R_2} + {R_p}$ …… (I)
We will now substitute${R_p} = 200\Omega $, ${R_1} = 200\Omega $ and ${R_2} = 100\Omega $ in equation (I) to find $R_s$.
$ \Rightarrow {R_s} = \left( {100 + 200 + 200} \right)\Omega $
$ \Rightarrow {R_s} = 500\Omega $
Now we can calculate the current through the whole circuit by applying ohm’s law. We know that,
$I = \dfrac{V}{{{R_s}}}$
We will now substitute ${R_s} = 500\Omega $ and $V = 100V$ to find the current I.
$I = \dfrac{{100V}}{{500\Omega }}$
$I = 0.2A$
This is the current through the whole circuit. Now the voltage reading of the voltmeter can be calculated by the formula,
${V_R} = I{R_V}$
In this equation, we can see that ${V_R}$ it is the voltmeter reading, and ${R_V}$ is the voltmeter resistance. We will now substitute ${R_V} = 200\Omega $ and $I = 0.2A$ to find the value of ${V_R}$.
$ \Rightarrow {V_R} = 0.2A \times 200\Omega $
$ \Rightarrow {V_R} = 40V$
Therefore the voltmeter reading is 40 V.
Note:
We can see that in the given problem as the resistors are connected into a series along a single path, so the equal current flows through all of the resistors. The current passing through every component is the same, so the net voltage in the whole circuit is the sum of the entire voltage drop across these components. In a parallel circuit, the total current is the sum of all the current in each of these components. Since the voltmeter has a resistance, hence it is also considered as a separate resistor.
Complete step by step answer:
We all have studied to know that if two resistors $R_1$ and $R_2$ are connected in parallel, then the net resistance $R_p$ is given by the formula:
$ \Rightarrow {R_p} = \dfrac{{{R_1}{R_2}}}{{{R_1} + {R_2}}}$
As we can see in the given problem, here 300 ohms and 600-ohm voltmeter are connected in parallel, so the net resistance can be found out by substituting $R_1=600$ ohm and $R_2=300$ ohm to find $R_p$. Therefore, it becomes,
$ \Rightarrow {R_p} = \dfrac{{600\Omega \times 300\Omega }}{{600\Omega + 300\Omega }}$
$ \Rightarrow {R_p} = \dfrac{{300 \times 6}}{9}$
As we will simplify the above equation, then it will become,
$\therefore {R_p} = 200\Omega $
We all have studied to know that if three resistors $R_1$ and $R_2$ and $R_p$ are connected in series, then the net resistance $R_s$ is given by the formula:
${R_s} = {R_1} + {R_2} + {R_p}$ …… (I)
We will now substitute${R_p} = 200\Omega $, ${R_1} = 200\Omega $ and ${R_2} = 100\Omega $ in equation (I) to find $R_s$.
$ \Rightarrow {R_s} = \left( {100 + 200 + 200} \right)\Omega $
$ \Rightarrow {R_s} = 500\Omega $
Now we can calculate the current through the whole circuit by applying ohm’s law. We know that,
$I = \dfrac{V}{{{R_s}}}$
We will now substitute ${R_s} = 500\Omega $ and $V = 100V$ to find the current I.
$I = \dfrac{{100V}}{{500\Omega }}$
$I = 0.2A$
This is the current through the whole circuit. Now the voltage reading of the voltmeter can be calculated by the formula,
${V_R} = I{R_V}$
In this equation, we can see that ${V_R}$ it is the voltmeter reading, and ${R_V}$ is the voltmeter resistance. We will now substitute ${R_V} = 200\Omega $ and $I = 0.2A$ to find the value of ${V_R}$.
$ \Rightarrow {V_R} = 0.2A \times 200\Omega $
$ \Rightarrow {V_R} = 40V$
Therefore the voltmeter reading is 40 V.
Note:
We can see that in the given problem as the resistors are connected into a series along a single path, so the equal current flows through all of the resistors. The current passing through every component is the same, so the net voltage in the whole circuit is the sum of the entire voltage drop across these components. In a parallel circuit, the total current is the sum of all the current in each of these components. Since the voltmeter has a resistance, hence it is also considered as a separate resistor.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

