
The ratio of electric field vector E and magnetic field vector H, i.e, $\left( {\dfrac{E}{H}} \right)$ has the dimensions of
(A) Resistance.
(B) Inductance.
(C) Capacitance.
(D) The product of inductance and capacitance.
Answer
531k+ views
Hint: The dimension of electric field vector (E) is volt/meter and the dimension of magnetic field vector (H) is Ampere/meter. In the given question, we can use these dimensions of electric field factor (E) and magnetic field vector (H) to find the answer. Volt is the dimension of voltage and ampere is the dimension of current.
Complete step by step answer: The dimension of electric field vector (E) is volt/meter and the dimension of magnetic field vector (H) is Ampere/meter.
Therefore, the ratio of electric field vector and magnetic field vector is given as,
$\dfrac{E}{H} = \dfrac{{\dfrac{{volt}}{{meter}}}}{{\dfrac{{ampere}}{{meter}}}} = \dfrac{{volt}}{{ampere}}$
Thus, the ratio of electric field vector and magnetic field vector is volt/ampere.
Volt is the dimension of voltage and ampere is the dimension of current. Therefore, the ratio of electric field vector E and magnetic field vector H becomes voltage/current $\left( {\dfrac{V}{I}} \right)$
Now, according to Ohm’s law, voltage/current ($\left( {\dfrac{V}{I}} \right)$) is equal to the resistance.
Thus, $\left( {\dfrac{E}{H}} \right)$ has the dimensions of resistance.
Hence, option (A) is the correct option.
Note: In this question you are asked to find the ratio of electric field vector E and magnetic field vector H. To evaluate the given question student must remember the dimensions of the electric field vector and magnetic field vector, then after substituting these terms in the $\dfrac{E}{H}$ equation, we will get our desire result that is resistance.
Complete step by step answer: The dimension of electric field vector (E) is volt/meter and the dimension of magnetic field vector (H) is Ampere/meter.
Therefore, the ratio of electric field vector and magnetic field vector is given as,
$\dfrac{E}{H} = \dfrac{{\dfrac{{volt}}{{meter}}}}{{\dfrac{{ampere}}{{meter}}}} = \dfrac{{volt}}{{ampere}}$
Thus, the ratio of electric field vector and magnetic field vector is volt/ampere.
Volt is the dimension of voltage and ampere is the dimension of current. Therefore, the ratio of electric field vector E and magnetic field vector H becomes voltage/current $\left( {\dfrac{V}{I}} \right)$
Now, according to Ohm’s law, voltage/current ($\left( {\dfrac{V}{I}} \right)$) is equal to the resistance.
Thus, $\left( {\dfrac{E}{H}} \right)$ has the dimensions of resistance.
Hence, option (A) is the correct option.
Note: In this question you are asked to find the ratio of electric field vector E and magnetic field vector H. To evaluate the given question student must remember the dimensions of the electric field vector and magnetic field vector, then after substituting these terms in the $\dfrac{E}{H}$ equation, we will get our desire result that is resistance.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

