The ratio of area of two similar triangles is 9:16, then the ratio of their corresponding sides will be?
Last updated date: 25th Mar 2023
•
Total views: 308.1k
•
Views today: 4.85k
Answer
308.1k+ views
Hint: The dimensional proportionality of similar triangles claims the ratio of areas of triangles to be the square of the ratio of their corresponding sides.
Here we are given that the area of two similar triangles are in the ratio 9:16
Let us consider that
A1 and A2 are the areas of two similar triangle, and
S1 and S2 are the corresponding sides of two similar triangles.
THEOREM:
The ratio of square of corresponding side of two similar triangles is equal to ratio of area of two similar triangles.
Now by using the above theorem the ratio of area of two similar triangles having areas A1 and A2 can be written as
$\dfrac{{A1}}{{A2}} = {\left( {\dfrac{{S1}}{{S2}}} \right)^2}$
Here the ratio of area of two similar triangles is given as 9:16
On substituting the values, we get
$\dfrac{9}{{16}} = {\left( {\dfrac{{S1}}{{S2}}} \right)^2}$
Taking square root on both sides, we get
$\dfrac{{S1}}{{S2}} = \dfrac{3}{4}$
Therefore the ratio of corresponding sides of similar triangle will be 3:4
Note: Here we have used the dimensional proportionality of similar triangles. This says that the ratio of square of corresponding side of two similar triangles is equal to ratio of area of two similar triangles. Now on substituting values we get the ratio of corresponding sides of similar triangles. Make a note that we have to choose proper dimensional proportionality based on the question that we have found as there are any statements.
Here we are given that the area of two similar triangles are in the ratio 9:16
Let us consider that
A1 and A2 are the areas of two similar triangle, and
S1 and S2 are the corresponding sides of two similar triangles.
THEOREM:
The ratio of square of corresponding side of two similar triangles is equal to ratio of area of two similar triangles.
Now by using the above theorem the ratio of area of two similar triangles having areas A1 and A2 can be written as
$\dfrac{{A1}}{{A2}} = {\left( {\dfrac{{S1}}{{S2}}} \right)^2}$
Here the ratio of area of two similar triangles is given as 9:16
On substituting the values, we get
$\dfrac{9}{{16}} = {\left( {\dfrac{{S1}}{{S2}}} \right)^2}$
Taking square root on both sides, we get
$\dfrac{{S1}}{{S2}} = \dfrac{3}{4}$
Therefore the ratio of corresponding sides of similar triangle will be 3:4
Note: Here we have used the dimensional proportionality of similar triangles. This says that the ratio of square of corresponding side of two similar triangles is equal to ratio of area of two similar triangles. Now on substituting values we get the ratio of corresponding sides of similar triangles. Make a note that we have to choose proper dimensional proportionality based on the question that we have found as there are any statements.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

The coordinates of the points A and B are a0 and a0 class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write the 6 fundamental rights of India and explain in detail

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Name the 8 union territories of India

What are merits and demerits of democracy

Define human made resources

What is pollution? How many types of pollution? Define it

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

1 million is equivalent to which of the following -class-6-maths-CBSE
