The rate of disappearance of $S{O_2}$ in the reaction $2S{O_2} + {O_2} \to 2S{O_3}$ is $1.28 \times {10^{ - 5}}M{s^{ - 1}}$. The rate of appearance of $S{O_3}$ is
$
A)0.64 \times {10^{ - 5}}M{s^{ - 1}} \\
B)0.32 \times {10^{ - 5}}M{s^{ - 1}} \\
C)2.56 \times {10^{ - 5}}M{s^{ - 1}} \\
D)1.28 \times {10^{ - 5}}M{s^{ - 1}} \\
$
Answer
281.7k+ views
Hint: For reactants the rate of disappearance is a positive number. For products the rate of disappearance is a negative number because they are being formed and not disappearing. For reactants the rate of formation is a negative number because they are disappearing and not being formed.
Complete answer:
Reaction rate is calculated using the formula rate$ = \dfrac{{\Delta [C]}}{{\Delta T}}$, where $\Delta [C]$ is the change in product concentration during time period $\Delta T$. The rate of reaction can be observed by watching the disappearance of a reactant or the appearance of a product over time.
Rate of disappearance is given as $ - \dfrac{{\Delta [A]}}{{\Delta T}}$ where $A$ is a reactant. However, using this formula, the rate of disappearance cannot be negative. Also, if the negative rate of disappearance is essentially a positive rate of appearance.
The rate of appearance is a positive quantity. So, the rate of appearance of a product is equal to the rate of disappearance of a reactant.
So, for the reaction $2S{O_2} + {O_2} \to 2S{O_3}$ the stoichiometric ratio of $S{O_2}$ and $S{O_3}$ are same. So the rate will be the same.
Therefore, the rate of disappearance of $S{O_2}$ and the rate of formation of $S{O_3}$ are the same.
So, the correct answer is $D)1.28 \times {10^{ - 5}}M{s^{ - 1}}$
Note:
When a catalyst is involved in the collision between the reactant molecules, less energy is required for the chemical change to take place, and hence more collisions have sufficient energy for reaction to occur. The reaction rate therefore increases.
Complete answer:
Reaction rate is calculated using the formula rate$ = \dfrac{{\Delta [C]}}{{\Delta T}}$, where $\Delta [C]$ is the change in product concentration during time period $\Delta T$. The rate of reaction can be observed by watching the disappearance of a reactant or the appearance of a product over time.
Rate of disappearance is given as $ - \dfrac{{\Delta [A]}}{{\Delta T}}$ where $A$ is a reactant. However, using this formula, the rate of disappearance cannot be negative. Also, if the negative rate of disappearance is essentially a positive rate of appearance.
The rate of appearance is a positive quantity. So, the rate of appearance of a product is equal to the rate of disappearance of a reactant.
So, for the reaction $2S{O_2} + {O_2} \to 2S{O_3}$ the stoichiometric ratio of $S{O_2}$ and $S{O_3}$ are same. So the rate will be the same.
Therefore, the rate of disappearance of $S{O_2}$ and the rate of formation of $S{O_3}$ are the same.
So, the correct answer is $D)1.28 \times {10^{ - 5}}M{s^{ - 1}}$
Note:
When a catalyst is involved in the collision between the reactant molecules, less energy is required for the chemical change to take place, and hence more collisions have sufficient energy for reaction to occur. The reaction rate therefore increases.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Which of the following would not be a valid reason class 11 biology CBSE

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Trending doubts
The ray passing through the of the lens is not deviated class 10 physics CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

What is the nlx method How is it useful class 11 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the difference between anaerobic aerobic respiration class 10 biology CBSE
