
The rate of a reaction A doubles on increasing the temperature from $300$ to ${\rm{310}}\;{\rm{K}}$. By how much, the temperature of reaction B should be increased from ${\rm{300}}\;{\rm{K}}$ so that rates double if activation energy of reaction B is twice that of reaction A?
A. ${\rm{4}}{\rm{.92}}\;{\rm{K}}$
B. ${\rm{19}}{\rm{.67}}\;{\rm{K}}$
C. ${\rm{2}}{\rm{.45}}\;{\rm{K}}$
D. ${\rm{9}}{\rm{.84}}\;{\rm{K}}$
Answer
566.7k+ views
Hint: We know that the Arrhenius equation is useful for calculating the unknown or final temperature of any reaction. It has temperature, activation energy, rate constant and gas constant. The temperature is usually taken in kelvin.
Complete step by step solution:
We have given data as follows,
The initial temperature of reaction A is ${\rm{300}}\;{\rm{K}}$.
The final temperature of reaction A is ${\rm{310}}\;{\rm{K}}$.
The initial temperature of reaction B is ${\rm{300}}\;{\rm{K}}$.
According to the given statement the rate of the reaction increases which means for reaction A:
${\rm{k'}} = {\rm{2k}}$
As we all know, the Arrhenius equation is needed for the two temperature and rate constants as shown below.
${\mathop{\rm l}\nolimits} {\rm{og}}\dfrac{{{\rm{k'}}}}{{\rm{k}}} = \dfrac{{\rm{E}}}{{{\rm{2}}{\rm{.303R}}}}\left[ {\dfrac{{{\rm{T'}} - {\rm{T}}}}{{{\rm{TT'}}}}} \right]$
Substitute all the respective values in above equation we get,
$
\Rightarrow {\mathop{\rm l}\nolimits} {\rm{og}}\dfrac{{{\rm{2k}}}}{{\rm{k}}} = \dfrac{{\rm{E}}}{{{\rm{2}}{\rm{.303R}}}}\left[ {\dfrac{{310 - 300}}{{310 \times 300}}} \right]\\
\Rightarrow \log 2 = \dfrac{{\rm{E}}}{{{\rm{2}}{\rm{.303R}}}}\left[ {\dfrac{{310 - 300}}{{310 \times 300}}} \right]......\left( 1 \right)
$
Similarly, for equation B the Arrhenius equation is shown below.
${\mathop{\rm l}\nolimits} {\rm{og}}\dfrac{{{\rm{k'}}}}{{\rm{k}}} = \dfrac{{\rm{E}}}{{{\rm{2}}{\rm{.303R}}}}\left[ {\dfrac{{{\rm{T'}} - {\rm{T}}}}{{{\rm{TT'}}}}} \right]$
The given condition in the question for reaction B is shown below.
$
{\rm{k'}} = {\rm{2k}}\\
\Rightarrow {{\rm{E}}_{\rm{a}}}{\rm{(B)}} = {\rm{2}}{{\rm{E}}_{\rm{a}}}{\rm{(A)}}
$
Substitute all the respective values in the above equation.
$
\Rightarrow {\mathop{\rm l}\nolimits} {\rm{og}}\dfrac{{{\rm{2k}}}}{{\rm{k}}} = \dfrac{{{\rm{2E}}}}{{{\rm{2}}{\rm{.303R}}}}\left[ {\dfrac{{{\rm{T'}} - 300}}{{{\rm{300}} \times {\rm{T'}}}}} \right]\\
\Rightarrow \log 2 = \dfrac{{{\rm{2E}}}}{{{\rm{2}}{\rm{.303R}}}}\left[ {\dfrac{{{\rm{T'}} - 300}}{{{\rm{300}} \times {\rm{T'}}}}} \right]......\left( 2 \right)
$
Now, divide the equation (2) by equation (1).
$
\Rightarrow \dfrac{{\log 2}}{{\log 2}} = \dfrac{{\dfrac{{{\rm{2E}}}}{{{\rm{2}}{\rm{.303R}}}}\left[ {\dfrac{{{\rm{T'}} - 300}}{{{\rm{300}} \times {\rm{T'}}}}} \right]}}{{\dfrac{{\rm{E}}}{{{\rm{2}}{\rm{.303R}}}}\left[ {\dfrac{{10}}{{{\rm{300}} \times 310}}} \right]}}\\
\Rightarrow 1 = 2 \times \dfrac{{\left[ {\dfrac{{{\rm{T'}} - 300}}{{{\rm{T'}}}}} \right]}}{{\left[ {\dfrac{1}{{31}}} \right]}}\\
\Rightarrow \dfrac{1}{{62}} = \dfrac{{{\rm{T'}} - 300}}{{{\rm{T'}}}}\\
\Rightarrow {\rm{T'}} - 300 = 0.01613{\rm{T'}}
$
Further solve the above equation we get,
$
\Rightarrow 0.9838{\rm{T'}} = 300\\
\Rightarrow {\rm{T'}} = 304.92\;{\rm{K}}
$
The temperature f reaction which should be increased from ${\rm{300}}\;{\rm{K}}$ by $304.92\;{\rm{K}}$ is $304.92\;{\rm{K}} - {\rm{300}}\;{\rm{K}} = {\rm{4}}{\rm{.92}}\;{\rm{K}}$.
Hence, “the temperature of reaction B should be increased from ${\rm{300}}\;{\rm{K}}$ so that rates doubles if activation energy of the reaction B is twice to that of reaction A” is $4.92\;{\rm{K}}$.
Therefore, the correct option for this given question is A that is $4.92\;{\rm{K}}$.
Note:
The Arrhenius equation usually is affected by the activation energy and temperatures. It generally is used to calculate the missing temperature of the chemical reaction, activation energy and frequency factor.
Complete step by step solution:
We have given data as follows,
The initial temperature of reaction A is ${\rm{300}}\;{\rm{K}}$.
The final temperature of reaction A is ${\rm{310}}\;{\rm{K}}$.
The initial temperature of reaction B is ${\rm{300}}\;{\rm{K}}$.
According to the given statement the rate of the reaction increases which means for reaction A:
${\rm{k'}} = {\rm{2k}}$
As we all know, the Arrhenius equation is needed for the two temperature and rate constants as shown below.
${\mathop{\rm l}\nolimits} {\rm{og}}\dfrac{{{\rm{k'}}}}{{\rm{k}}} = \dfrac{{\rm{E}}}{{{\rm{2}}{\rm{.303R}}}}\left[ {\dfrac{{{\rm{T'}} - {\rm{T}}}}{{{\rm{TT'}}}}} \right]$
Substitute all the respective values in above equation we get,
$
\Rightarrow {\mathop{\rm l}\nolimits} {\rm{og}}\dfrac{{{\rm{2k}}}}{{\rm{k}}} = \dfrac{{\rm{E}}}{{{\rm{2}}{\rm{.303R}}}}\left[ {\dfrac{{310 - 300}}{{310 \times 300}}} \right]\\
\Rightarrow \log 2 = \dfrac{{\rm{E}}}{{{\rm{2}}{\rm{.303R}}}}\left[ {\dfrac{{310 - 300}}{{310 \times 300}}} \right]......\left( 1 \right)
$
Similarly, for equation B the Arrhenius equation is shown below.
${\mathop{\rm l}\nolimits} {\rm{og}}\dfrac{{{\rm{k'}}}}{{\rm{k}}} = \dfrac{{\rm{E}}}{{{\rm{2}}{\rm{.303R}}}}\left[ {\dfrac{{{\rm{T'}} - {\rm{T}}}}{{{\rm{TT'}}}}} \right]$
The given condition in the question for reaction B is shown below.
$
{\rm{k'}} = {\rm{2k}}\\
\Rightarrow {{\rm{E}}_{\rm{a}}}{\rm{(B)}} = {\rm{2}}{{\rm{E}}_{\rm{a}}}{\rm{(A)}}
$
Substitute all the respective values in the above equation.
$
\Rightarrow {\mathop{\rm l}\nolimits} {\rm{og}}\dfrac{{{\rm{2k}}}}{{\rm{k}}} = \dfrac{{{\rm{2E}}}}{{{\rm{2}}{\rm{.303R}}}}\left[ {\dfrac{{{\rm{T'}} - 300}}{{{\rm{300}} \times {\rm{T'}}}}} \right]\\
\Rightarrow \log 2 = \dfrac{{{\rm{2E}}}}{{{\rm{2}}{\rm{.303R}}}}\left[ {\dfrac{{{\rm{T'}} - 300}}{{{\rm{300}} \times {\rm{T'}}}}} \right]......\left( 2 \right)
$
Now, divide the equation (2) by equation (1).
$
\Rightarrow \dfrac{{\log 2}}{{\log 2}} = \dfrac{{\dfrac{{{\rm{2E}}}}{{{\rm{2}}{\rm{.303R}}}}\left[ {\dfrac{{{\rm{T'}} - 300}}{{{\rm{300}} \times {\rm{T'}}}}} \right]}}{{\dfrac{{\rm{E}}}{{{\rm{2}}{\rm{.303R}}}}\left[ {\dfrac{{10}}{{{\rm{300}} \times 310}}} \right]}}\\
\Rightarrow 1 = 2 \times \dfrac{{\left[ {\dfrac{{{\rm{T'}} - 300}}{{{\rm{T'}}}}} \right]}}{{\left[ {\dfrac{1}{{31}}} \right]}}\\
\Rightarrow \dfrac{1}{{62}} = \dfrac{{{\rm{T'}} - 300}}{{{\rm{T'}}}}\\
\Rightarrow {\rm{T'}} - 300 = 0.01613{\rm{T'}}
$
Further solve the above equation we get,
$
\Rightarrow 0.9838{\rm{T'}} = 300\\
\Rightarrow {\rm{T'}} = 304.92\;{\rm{K}}
$
The temperature f reaction which should be increased from ${\rm{300}}\;{\rm{K}}$ by $304.92\;{\rm{K}}$ is $304.92\;{\rm{K}} - {\rm{300}}\;{\rm{K}} = {\rm{4}}{\rm{.92}}\;{\rm{K}}$.
Hence, “the temperature of reaction B should be increased from ${\rm{300}}\;{\rm{K}}$ so that rates doubles if activation energy of the reaction B is twice to that of reaction A” is $4.92\;{\rm{K}}$.
Therefore, the correct option for this given question is A that is $4.92\;{\rm{K}}$.
Note:
The Arrhenius equation usually is affected by the activation energy and temperatures. It generally is used to calculate the missing temperature of the chemical reaction, activation energy and frequency factor.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

