
The rate constant of third order reaction is:
(A) \[{\text{mol li}}{{\text{t}}^{ - 1}}{\text{ }}{{\text{s}}^{ - 1}}\]
(B) \[{\text{mo}}{{\text{l}}^{ - 2}}{\text{ }}{{\text{L}}^2}{\text{ }}{{\text{T}}^{ - 1}}\]
(C) \[{\text{mo}}{{\text{l}}^{ - 1}}{\text{ lit }}{{\text{s}}^{ - 1}}\]
(D) \[{\text{mo}}{{\text{l}}^{ - 2}}{\text{ li}}{{\text{t}}^{ - 1}}{\text{ }}{{\text{s}}^{ - 1}}\]
Answer
551.4k+ views
Hint: Use the following formula for the units of the rate constant of nth order reaction.
\[{\text{Unit}} = {\left( {{\text{mol li}}{{\text{t}}^{ - 1}}} \right)^{1 - n}}{\text{ }}{{\text{s}}^{ - 1}}\]
In the above formula, substitute 3 for the value of n and obtain the units of the rate constant for third order reaction.
Complete step by step answer:
A rate law expression is the relationship between the rate of the reaction, the rate constant of the reaction and the specific reaction rate.
For nth order reaction, the rate law expression is, \[{\text{rate }} = k \times {\left[ {{\text{reactant}}} \right]^n}\] .
Here, k is the rate constant or specific reaction rate.
For nth order reaction, the rate of the reaction is proportional to the nth order of the reactant concentration.
Thus, for the first order reaction, \[{\text{rate }} = k \times {\left[ {{\text{reactant}}} \right]^1}\].
Thus, for the second order reaction, \[{\text{rate }} = k \times {\left[ {{\text{reactant}}} \right]^2}\].
Thus, for the third order reaction, \[{\text{rate }} = k \times {\left[ {{\text{reactant}}} \right]^3}\].
Obtain the units of the rate constant for third order reaction.
\[{\text{Unit}} = {\left( {{\text{mol li}}{{\text{t}}^{ - 1}}} \right)^{1 - n}}{\text{ }}{{\text{s}}^{ - 1}} \\
{\text{Unit}} = {\left( {{\text{mol li}}{{\text{t}}^{ - 1}}} \right)^{1 - 3}}{\text{ }}{{\text{s}}^{ - 1}} \\
{\text{Unit}} = {\left( {{\text{mol li}}{{\text{t}}^{ - 1}}} \right)^{ - 2}}{\text{ }}{{\text{s}}^{ - 1}} \\
{\text{Unit}} = {\text{mo}}{{\text{l}}^{ - 2}}{\text{ li}}{{\text{t}}^2}{\text{ }}{{\text{s}}^{ - 1}} \]
\[{\text{Unit}} = {\text{mo}}{{\text{l}}^{ - 2}}{\text{ li}}{{\text{t}}^2}{\text{ }}{{\text{T}}^{ - 1}}\]
Here, the second is replaced with T for the unit of time.
The unit for the rate constant of third order reaction is \[{\text{mo}}{{\text{l}}^{ - 2}}{\text{ }}{{\text{L}}^2}{\text{ }}{{\text{T}}^{ - 1}}\] :
You can also write the unit for the rate constant of third order reaction as \[{{\text{M}}^{ - 2}}{\text{ }}{{\text{T}}^{ - 1}}\] :
Here, M represents the molarity or molar concentration. The unit of molarity is moles per litre.
So, the correct option is the option (B).
Note: You can use the following alternate approach to obtain units of the rate constant for the third order reaction.
\[{\text{rate }} = k \times {\left[ {{\text{reactant}}} \right]^3}\]
Rearrange the above equation. Substitute the units of rate and the reactant concentration
\[k = \dfrac{{{\text{rate}}}}{{{{\left[ {{\text{reactant}}} \right]}^3}}}{\text{ }} \\
k = \dfrac{{{\text{mol li}}{{\text{t}}^{ - 1}}{\text{ }}{{\text{T}}^{ - 1}}}}{{{{\left( {{\text{mol li}}{{\text{t}}^{ - 1}}} \right)}^3}}}{\text{ }} \\
k = {\text{mo}}{{\text{l}}^{ - 2}}{\text{ li}}{{\text{t}}^2}{\text{ }}{{\text{T}}^{ - 1}}\]
\[{\text{Unit}} = {\left( {{\text{mol li}}{{\text{t}}^{ - 1}}} \right)^{1 - n}}{\text{ }}{{\text{s}}^{ - 1}}\]
In the above formula, substitute 3 for the value of n and obtain the units of the rate constant for third order reaction.
Complete step by step answer:
A rate law expression is the relationship between the rate of the reaction, the rate constant of the reaction and the specific reaction rate.
For nth order reaction, the rate law expression is, \[{\text{rate }} = k \times {\left[ {{\text{reactant}}} \right]^n}\] .
Here, k is the rate constant or specific reaction rate.
For nth order reaction, the rate of the reaction is proportional to the nth order of the reactant concentration.
Thus, for the first order reaction, \[{\text{rate }} = k \times {\left[ {{\text{reactant}}} \right]^1}\].
Thus, for the second order reaction, \[{\text{rate }} = k \times {\left[ {{\text{reactant}}} \right]^2}\].
Thus, for the third order reaction, \[{\text{rate }} = k \times {\left[ {{\text{reactant}}} \right]^3}\].
Obtain the units of the rate constant for third order reaction.
\[{\text{Unit}} = {\left( {{\text{mol li}}{{\text{t}}^{ - 1}}} \right)^{1 - n}}{\text{ }}{{\text{s}}^{ - 1}} \\
{\text{Unit}} = {\left( {{\text{mol li}}{{\text{t}}^{ - 1}}} \right)^{1 - 3}}{\text{ }}{{\text{s}}^{ - 1}} \\
{\text{Unit}} = {\left( {{\text{mol li}}{{\text{t}}^{ - 1}}} \right)^{ - 2}}{\text{ }}{{\text{s}}^{ - 1}} \\
{\text{Unit}} = {\text{mo}}{{\text{l}}^{ - 2}}{\text{ li}}{{\text{t}}^2}{\text{ }}{{\text{s}}^{ - 1}} \]
\[{\text{Unit}} = {\text{mo}}{{\text{l}}^{ - 2}}{\text{ li}}{{\text{t}}^2}{\text{ }}{{\text{T}}^{ - 1}}\]
Here, the second is replaced with T for the unit of time.
The unit for the rate constant of third order reaction is \[{\text{mo}}{{\text{l}}^{ - 2}}{\text{ }}{{\text{L}}^2}{\text{ }}{{\text{T}}^{ - 1}}\] :
You can also write the unit for the rate constant of third order reaction as \[{{\text{M}}^{ - 2}}{\text{ }}{{\text{T}}^{ - 1}}\] :
Here, M represents the molarity or molar concentration. The unit of molarity is moles per litre.
So, the correct option is the option (B).
Note: You can use the following alternate approach to obtain units of the rate constant for the third order reaction.
\[{\text{rate }} = k \times {\left[ {{\text{reactant}}} \right]^3}\]
Rearrange the above equation. Substitute the units of rate and the reactant concentration
\[k = \dfrac{{{\text{rate}}}}{{{{\left[ {{\text{reactant}}} \right]}^3}}}{\text{ }} \\
k = \dfrac{{{\text{mol li}}{{\text{t}}^{ - 1}}{\text{ }}{{\text{T}}^{ - 1}}}}{{{{\left( {{\text{mol li}}{{\text{t}}^{ - 1}}} \right)}^3}}}{\text{ }} \\
k = {\text{mo}}{{\text{l}}^{ - 2}}{\text{ li}}{{\text{t}}^2}{\text{ }}{{\text{T}}^{ - 1}}\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

