
The rate constant of a reaction is \[1.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}{\text{ }}{{\text{s}}^{ - 1}}\] at \[{50^ \circ }C\] and \[4.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}{\text{ }}{{\text{s}}^{ - 1}}\] at \[{100^ \circ }C\]. Calculate the Arrhenius parameter A and \[{E_a}\].
Answer
500.4k+ views
Hint: We have the value of rate constant for both reactions. Both the reactions are of first order. We have to find Arrhenius parameter, A and activation energy \[{E_a}\] for the reaction. We will use the relation of temperature with activation energy and then by using activation energy we will find the Arrhenius parameter.
Formula Used:
\[(i){\text{ lo}}{{\text{g}}_{10}}\dfrac{{{k_2}}}{{{k_1}}}{\text{ = }}\dfrac{{{E_a}}}{{2.303R}}\left( {\dfrac{1}{{{T_1}}}{\text{ - }}\dfrac{1}{{{T_2}}}} \right)\]
\[(ii){\text{ lo}}{{\text{g}}_{10}}{\text{k = lo}}{{\text{g}}_{10}}{\text{A - }}\dfrac{{{E_a}}}{{2.303RT}}\]
Complete answer:
Since rate of the reaction is given at different temperature we can find the value of activation energy by using the given relation,
\[{\text{ lo}}{{\text{g}}_{10}}\dfrac{{{k_2}}}{{{k_1}}}{\text{ = }}\dfrac{{{E_a}}}{{2.303R}}\left( {\dfrac{1}{{{T_1}}}{\text{ - }}\dfrac{1}{{{T_2}}}} \right)\]
Let us consider rate of reaction at temperature \[{T_{1{\text{ }}}}\] be \[1.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}{\text{ }}{{\text{s}}^{ - 1}}\] and the rate of reaction at temperature \[{T_2}\] be \[4.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}{\text{ }}{{\text{s}}^{ - 1}}\] . Hence,
\[{T_{1{\text{ }}}} = {\text{ 50 + 273 = 323 K}}\]
\[{T_{{\text{2 }}}} = {\text{ 100 + 273 = 373 K}}\]
\[{\text{ }}{{\text{k}}_1}{\text{ = }}1.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}{\text{ }}{{\text{s}}^{ - 1}}\]
\[{k_2}{\text{ = }}4.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}{\text{ }}{{\text{s}}^{ - 1}}\]
On substituting the above values we get the result as,
\[{\text{ lo}}{{\text{g}}_{10}}\dfrac{{{k_2}}}{{{k_1}}}{\text{ = }}\dfrac{{{E_a}}}{{2.303R}}\left( {\dfrac{1}{{{T_1}}}{\text{ - }}\dfrac{1}{{{T_2}}}} \right)\]
\[{\text{ lo}}{{\text{g}}_{10}}\dfrac{{4.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}}}{{1.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}}}{\text{ = }}\dfrac{{{E_a}}}{{2.303R}}\left( {\dfrac{1}{{323}}{\text{ - }}\dfrac{1}{{373}}} \right)\]
\[{\text{ lo}}{{\text{g}}_{10}}{\text{3 = }}\dfrac{{{E_a}}}{{2.303{\text{ }} \times {\text{ 8}}{\text{.314}}}}\left( {\dfrac{{50}}{{323{\text{ }} \times {\text{ 373}}}}} \right)\]
On solving the equation we get the result as,
\[{\text{ }}{{\text{E}}_a}{\text{ = 2}}{\text{.2 }} \times {\text{ 1}}{{\text{0}}^4}{\text{ J mo}}{{\text{l}}^{ - 1}}\]
Thus we get the value of activation energy for the reaction. Now we will calculate the value of Arrhenius constant by using the value of activation energy as,
\[{\text{ lo}}{{\text{g}}_{10}}{\text{k = lo}}{{\text{g}}_{10}}{\text{A - }}\dfrac{{{E_a}}}{{2.303RT}}\]
Here the value of k is \[1.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}{\text{ }}{{\text{s}}^{ - 1}}\] and value of T is \[ = {\text{ 50 + 273 = 323 K}}\]. On substituting the values we get the result as,
\[{\text{ lo}}{{\text{g}}_{10}}{\text{1}}{\text{.5 }} \times {\text{ 1}}{{\text{0}}^7}{\text{ = lo}}{{\text{g}}_{10}}{\text{A - }}\dfrac{{2.2{\text{ }} \times {\text{ }}{{10}^4}}}{{2.303{\text{ }} \times {\text{ R = 8}}{\text{.314 }} \times {\text{ 323}}}}\]
\[{\text{ lo}}{{\text{g}}_{10}}{\text{1}}{\text{.5 }} \times {\text{ 1}}{{\text{0}}^7}{\text{ = lo}}{{\text{g}}_{10}}{\text{A - 3}}{\text{.55}}\]
On solving the above equation we get,
\[{\text{A = 5}}{\text{.42 }} \times {\text{ 1}}{{\text{0}}^{10}}{\text{ }}{{\text{s}}^{ - 1}}\]
Thus we get the value of Arrhenius constant and activation energy of the reaction by using the relation between them.
Note:
We use the value of \[{\text{R = 8}}{\text{.314}}\] in the above solution. We must convert the temperature into Kelvin scale before putting in the formula we used. Since activation energy is a form of energy, therefore its unit is Joule. For finding the values of logarithmic functions, we can use a log table. Also some basic values of logarithmic function must be remembered.
Formula Used:
\[(i){\text{ lo}}{{\text{g}}_{10}}\dfrac{{{k_2}}}{{{k_1}}}{\text{ = }}\dfrac{{{E_a}}}{{2.303R}}\left( {\dfrac{1}{{{T_1}}}{\text{ - }}\dfrac{1}{{{T_2}}}} \right)\]
\[(ii){\text{ lo}}{{\text{g}}_{10}}{\text{k = lo}}{{\text{g}}_{10}}{\text{A - }}\dfrac{{{E_a}}}{{2.303RT}}\]
Complete answer:
Since rate of the reaction is given at different temperature we can find the value of activation energy by using the given relation,
\[{\text{ lo}}{{\text{g}}_{10}}\dfrac{{{k_2}}}{{{k_1}}}{\text{ = }}\dfrac{{{E_a}}}{{2.303R}}\left( {\dfrac{1}{{{T_1}}}{\text{ - }}\dfrac{1}{{{T_2}}}} \right)\]
Let us consider rate of reaction at temperature \[{T_{1{\text{ }}}}\] be \[1.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}{\text{ }}{{\text{s}}^{ - 1}}\] and the rate of reaction at temperature \[{T_2}\] be \[4.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}{\text{ }}{{\text{s}}^{ - 1}}\] . Hence,
\[{T_{1{\text{ }}}} = {\text{ 50 + 273 = 323 K}}\]
\[{T_{{\text{2 }}}} = {\text{ 100 + 273 = 373 K}}\]
\[{\text{ }}{{\text{k}}_1}{\text{ = }}1.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}{\text{ }}{{\text{s}}^{ - 1}}\]
\[{k_2}{\text{ = }}4.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}{\text{ }}{{\text{s}}^{ - 1}}\]
On substituting the above values we get the result as,
\[{\text{ lo}}{{\text{g}}_{10}}\dfrac{{{k_2}}}{{{k_1}}}{\text{ = }}\dfrac{{{E_a}}}{{2.303R}}\left( {\dfrac{1}{{{T_1}}}{\text{ - }}\dfrac{1}{{{T_2}}}} \right)\]
\[{\text{ lo}}{{\text{g}}_{10}}\dfrac{{4.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}}}{{1.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}}}{\text{ = }}\dfrac{{{E_a}}}{{2.303R}}\left( {\dfrac{1}{{323}}{\text{ - }}\dfrac{1}{{373}}} \right)\]
\[{\text{ lo}}{{\text{g}}_{10}}{\text{3 = }}\dfrac{{{E_a}}}{{2.303{\text{ }} \times {\text{ 8}}{\text{.314}}}}\left( {\dfrac{{50}}{{323{\text{ }} \times {\text{ 373}}}}} \right)\]
On solving the equation we get the result as,
\[{\text{ }}{{\text{E}}_a}{\text{ = 2}}{\text{.2 }} \times {\text{ 1}}{{\text{0}}^4}{\text{ J mo}}{{\text{l}}^{ - 1}}\]
Thus we get the value of activation energy for the reaction. Now we will calculate the value of Arrhenius constant by using the value of activation energy as,
\[{\text{ lo}}{{\text{g}}_{10}}{\text{k = lo}}{{\text{g}}_{10}}{\text{A - }}\dfrac{{{E_a}}}{{2.303RT}}\]
Here the value of k is \[1.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}{\text{ }}{{\text{s}}^{ - 1}}\] and value of T is \[ = {\text{ 50 + 273 = 323 K}}\]. On substituting the values we get the result as,
\[{\text{ lo}}{{\text{g}}_{10}}{\text{1}}{\text{.5 }} \times {\text{ 1}}{{\text{0}}^7}{\text{ = lo}}{{\text{g}}_{10}}{\text{A - }}\dfrac{{2.2{\text{ }} \times {\text{ }}{{10}^4}}}{{2.303{\text{ }} \times {\text{ R = 8}}{\text{.314 }} \times {\text{ 323}}}}\]
\[{\text{ lo}}{{\text{g}}_{10}}{\text{1}}{\text{.5 }} \times {\text{ 1}}{{\text{0}}^7}{\text{ = lo}}{{\text{g}}_{10}}{\text{A - 3}}{\text{.55}}\]
On solving the above equation we get,
\[{\text{A = 5}}{\text{.42 }} \times {\text{ 1}}{{\text{0}}^{10}}{\text{ }}{{\text{s}}^{ - 1}}\]
Thus we get the value of Arrhenius constant and activation energy of the reaction by using the relation between them.
Note:
We use the value of \[{\text{R = 8}}{\text{.314}}\] in the above solution. We must convert the temperature into Kelvin scale before putting in the formula we used. Since activation energy is a form of energy, therefore its unit is Joule. For finding the values of logarithmic functions, we can use a log table. Also some basic values of logarithmic function must be remembered.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

