
The range of the function $f(x) = {\cot ^{ - 1}}\theta \left( {{{\log }_{0.5}}({x^4} - 2{x^2} + 3)} \right)$
A. $(0,\pi )$
B. $(0,\dfrac{{3\pi }}{4}]$
C. $[\dfrac{{3\pi }}{4},\pi )$
D. $\left[ {\dfrac{\pi }{2},\dfrac{{3\pi }}{4}} \right]$
Answer
590.4k+ views
Hint: For finding the range of a function we’ll first assume the function as a new variable let say y, now we’ll transform the equation in such a way that the equation will become y in terms of x and check for which value of y, x is defined and that set will be the range of the function.
Complete step by step Answer:
Given data: $f(x) = {\cot ^{ - 1}}\left( {{{\log }_{0.5}}({x^4} - 2{x^2} + 3)} \right)$
Let us assume that $y = f(x)$
Substituting the value of f(x)
$ \Rightarrow y = {\cot ^{ - 1}}\left( {{{\log }_{0.5}}({x^4} - 2{x^2} + 3)} \right)$
Taking both the sides as the function of the cot
\[ \Rightarrow \cot y = \cot \left( {{{\cot }^{ - 1}}\left( {{{\log }_{0.5}}({x^4} - 2{x^2} + 3)} \right)} \right)\]
Using \[\cot \left( {{{\cot }^{ - 1}}A} \right) = A\], we get,
\[ \Rightarrow \cot y = {\log _{0.5}}({x^4} - 2{x^2} + 3)\]
We know that if $c = {\log _a}b$ then, ${a^c} = b$
\[ \Rightarrow {0.5^{\cot y}} = {x^4} - 2{x^2} + 3\]
\[ \Rightarrow {\left( {\dfrac{1}{2}} \right)^{\cot y}} = {x^4} - 2{x^2} + 3\]
On expanding the constant term, we get,
\[ \Rightarrow {\left( {\dfrac{1}{2}} \right)^{\cot y}} = {x^4} - 2{x^2} + 1 + 2\]
Using \[{a^2} + {b^2} + 2ab = {\left( {a + b} \right)^2}\], we get,
\[ \Rightarrow {\left( 2 \right)^{ - \cot y}} = {\left( {{x^2} + 1} \right)^2} + 2............(i)\]
Since the square of any number is always greater than or equal to zero
Therefore we can say that, \[{\left( {{x^2} + 1} \right)^2} \geqslant 0\]
Adding 2 on both sides
\[ \Rightarrow {\left( {{x^2} + 1} \right)^2} + 2 \geqslant 2\]
i.e. \[\left[ {{{\left( {{x^2} + 1} \right)}^2} + 2} \right] \in [2,\infty )\]
from equation(i)
\[ \Rightarrow {\left( 2 \right)^{ - \cot y}} \in [2,\infty )\]
On comparing we can say that \[ - \cot y \in [1,\infty )\]
\[ \Rightarrow \cot y \in ( - \infty , - 1]\]
\[ \Rightarrow y \in (0,\dfrac{{3\pi }}{4}]\]
Therefore the range of the function \[f(x) \in (0,\dfrac{{3\pi }}{4}]\]
Option(B) is correct.
Note: An alternative method for this solution can be
Since the square of any number is always greater than or equal to zero
Therefore we can say that, \[{\left( {{x^2} + 1} \right)^2} \geqslant 0\]
Adding 2 on both sides
\[ \Rightarrow {\left( {{x^2} + 1} \right)^2} + 2 \geqslant 2\]
Therefore, \[\left[ {{{\left( {{x^2} + 1} \right)}^2} + 2} \right] \in [2,\infty )\]
Taking logarithm function with base 0.5 on both sides and since log, with baseless than one is a decreasing function
\[ \Rightarrow {\log _{0.5}}\left[ {{{\left( {{x^2} + 1} \right)}^2} + 2} \right] \in [{\log _{0.5}}2,{\log _{0.5}}\infty )\]
\[ \Rightarrow {\log _{0.5}}\left[ {{{\left( {{x^2} + 1} \right)}^2} + 2} \right] \in ({\log _{{2^{ - 1}}}}\infty ,{\log _{{2^{ - 1}}}}2]\]
Using ${\log _{{a^b}}}c = \dfrac{1}{b}{\log _a}c$
\[ \Rightarrow {\log _{0.5}}\left[ {{{\left( {{x^2} + 1} \right)}^2} + 2} \right] \in ( - {\log _2}\infty , - {\log _2}2]\]
\[ \Rightarrow {\log _{0.5}}\left[ {{{\left( {{x^2} + 1} \right)}^2} + 2} \right] \in ( - \infty , - 1]\]
Now, taking both sides as the function of ${\cot ^{ - 1}}\theta $ and since it is also a decreasing function
\[ \Rightarrow {\cot ^{ - 1}}\left[ {{{\log }_{0.5}}\left( {{{\left( {{x^2} + 1} \right)}^2} + 2} \right)} \right] \in [{\cot ^{ - 1}} - 1,{\cot ^{ - 1}} - \infty )\]
Substituting \[{\cot ^{ - 1}}\left[ {{{\log }_{0.5}}\left( {{{\left( {{x^2} + 1} \right)}^2} + 2} \right)} \right] = f(x)\]
\[ \Rightarrow f(x) \in (0,\dfrac{{3\pi }}{4}]\]
Option(B) is correct
Complete step by step Answer:
Given data: $f(x) = {\cot ^{ - 1}}\left( {{{\log }_{0.5}}({x^4} - 2{x^2} + 3)} \right)$
Let us assume that $y = f(x)$
Substituting the value of f(x)
$ \Rightarrow y = {\cot ^{ - 1}}\left( {{{\log }_{0.5}}({x^4} - 2{x^2} + 3)} \right)$
Taking both the sides as the function of the cot
\[ \Rightarrow \cot y = \cot \left( {{{\cot }^{ - 1}}\left( {{{\log }_{0.5}}({x^4} - 2{x^2} + 3)} \right)} \right)\]
Using \[\cot \left( {{{\cot }^{ - 1}}A} \right) = A\], we get,
\[ \Rightarrow \cot y = {\log _{0.5}}({x^4} - 2{x^2} + 3)\]
We know that if $c = {\log _a}b$ then, ${a^c} = b$
\[ \Rightarrow {0.5^{\cot y}} = {x^4} - 2{x^2} + 3\]
\[ \Rightarrow {\left( {\dfrac{1}{2}} \right)^{\cot y}} = {x^4} - 2{x^2} + 3\]
On expanding the constant term, we get,
\[ \Rightarrow {\left( {\dfrac{1}{2}} \right)^{\cot y}} = {x^4} - 2{x^2} + 1 + 2\]
Using \[{a^2} + {b^2} + 2ab = {\left( {a + b} \right)^2}\], we get,
\[ \Rightarrow {\left( 2 \right)^{ - \cot y}} = {\left( {{x^2} + 1} \right)^2} + 2............(i)\]
Since the square of any number is always greater than or equal to zero
Therefore we can say that, \[{\left( {{x^2} + 1} \right)^2} \geqslant 0\]
Adding 2 on both sides
\[ \Rightarrow {\left( {{x^2} + 1} \right)^2} + 2 \geqslant 2\]
i.e. \[\left[ {{{\left( {{x^2} + 1} \right)}^2} + 2} \right] \in [2,\infty )\]
from equation(i)
\[ \Rightarrow {\left( 2 \right)^{ - \cot y}} \in [2,\infty )\]
On comparing we can say that \[ - \cot y \in [1,\infty )\]
\[ \Rightarrow \cot y \in ( - \infty , - 1]\]
\[ \Rightarrow y \in (0,\dfrac{{3\pi }}{4}]\]
Therefore the range of the function \[f(x) \in (0,\dfrac{{3\pi }}{4}]\]
Option(B) is correct.
Note: An alternative method for this solution can be
Since the square of any number is always greater than or equal to zero
Therefore we can say that, \[{\left( {{x^2} + 1} \right)^2} \geqslant 0\]
Adding 2 on both sides
\[ \Rightarrow {\left( {{x^2} + 1} \right)^2} + 2 \geqslant 2\]
Therefore, \[\left[ {{{\left( {{x^2} + 1} \right)}^2} + 2} \right] \in [2,\infty )\]
Taking logarithm function with base 0.5 on both sides and since log, with baseless than one is a decreasing function
\[ \Rightarrow {\log _{0.5}}\left[ {{{\left( {{x^2} + 1} \right)}^2} + 2} \right] \in [{\log _{0.5}}2,{\log _{0.5}}\infty )\]
\[ \Rightarrow {\log _{0.5}}\left[ {{{\left( {{x^2} + 1} \right)}^2} + 2} \right] \in ({\log _{{2^{ - 1}}}}\infty ,{\log _{{2^{ - 1}}}}2]\]
Using ${\log _{{a^b}}}c = \dfrac{1}{b}{\log _a}c$
\[ \Rightarrow {\log _{0.5}}\left[ {{{\left( {{x^2} + 1} \right)}^2} + 2} \right] \in ( - {\log _2}\infty , - {\log _2}2]\]
\[ \Rightarrow {\log _{0.5}}\left[ {{{\left( {{x^2} + 1} \right)}^2} + 2} \right] \in ( - \infty , - 1]\]
Now, taking both sides as the function of ${\cot ^{ - 1}}\theta $ and since it is also a decreasing function
\[ \Rightarrow {\cot ^{ - 1}}\left[ {{{\log }_{0.5}}\left( {{{\left( {{x^2} + 1} \right)}^2} + 2} \right)} \right] \in [{\cot ^{ - 1}} - 1,{\cot ^{ - 1}} - \infty )\]
Substituting \[{\cot ^{ - 1}}\left[ {{{\log }_{0.5}}\left( {{{\left( {{x^2} + 1} \right)}^2} + 2} \right)} \right] = f(x)\]
\[ \Rightarrow f(x) \in (0,\dfrac{{3\pi }}{4}]\]
Option(B) is correct
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

