
The radius of the largest sphere which fits properly at the center of the edge of body centered cubic unit cell is: (edge length is represented by a)
(A) 0.134a
(B) 0.027a
(C) 0.067a
(D) 0.047a
Answer
557.1k+ views
Hint: A unit cell is the smallest repeating unit in the crystal lattice, it is the building block of a crystal like the cell which is the building block of the human body. Body centered cubic cell is one of the types of the unit cell.
Complete step by step solution:
To solve this question we have to find the relation between the radius (r) and the edge of the body centered unit cell (a). We know that the total number of atoms present in the body centered cubic cell is = 2.
In body centered unit cells, atoms in the body diagonals are in contact with each other. So the length of the body diagonal is = $R+2R+R=4R$
The body diagonal = $\sqrt{3}a$
So, 4R = $\sqrt{3}a$---1
According to the question
\[\dfrac{a}{2}=\left( R+r \right)\]---2
From equation 1 and 2
\[\dfrac{a}{2}=\dfrac{a\sqrt{3}}{4}+r\]
\[a(\dfrac{2-\sqrt{3}}{4})=r\]
r = 0.067a
Hence the correct answer is option (C)
Note: In the body centered unit cell, atoms are present at the center and at the corner of the cube. And as we know that there is only one center in a cube hence only one atom is completely present there that means that this atom is not shared with any other unit cell and one atom at the corner contributes to eight other corners. So the total number of atoms present in the body centered cubic cell is = 2. i.e.
1 atom at body center $+\text{ (}\dfrac{1}{8})(8)$ at the corner = 2 atoms
Complete step by step solution:
To solve this question we have to find the relation between the radius (r) and the edge of the body centered unit cell (a). We know that the total number of atoms present in the body centered cubic cell is = 2.
In body centered unit cells, atoms in the body diagonals are in contact with each other. So the length of the body diagonal is = $R+2R+R=4R$
The body diagonal = $\sqrt{3}a$
So, 4R = $\sqrt{3}a$---1
According to the question
\[\dfrac{a}{2}=\left( R+r \right)\]---2
From equation 1 and 2
\[\dfrac{a}{2}=\dfrac{a\sqrt{3}}{4}+r\]
\[a(\dfrac{2-\sqrt{3}}{4})=r\]
r = 0.067a
Hence the correct answer is option (C)
Note: In the body centered unit cell, atoms are present at the center and at the corner of the cube. And as we know that there is only one center in a cube hence only one atom is completely present there that means that this atom is not shared with any other unit cell and one atom at the corner contributes to eight other corners. So the total number of atoms present in the body centered cubic cell is = 2. i.e.
1 atom at body center $+\text{ (}\dfrac{1}{8})(8)$ at the corner = 2 atoms
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

