
The radius of a right circular cylinder increases at the rate of 0.1 cm per minute, and the height decreases at the rate of 0.2 cm per minute. Find the rate of change of Volume of the cylinder in $c{{m}^{3}}$ per minute, when the radius is 2cm and the height is 3cm.
Answer
579k+ views
Hint: Now we know that the volume of cylinder is given by $V=\pi {{r}^{2}}h$ differentiating the function with respect to time and then using the formula $\left( uv \right)'=u'v+v'u$ we will get an differential equation. Now we know the radius of a right circular cylinder increases at the rate of 0.1 cm per minute, and the height decreases at the rate of 0.2 cm per minute. Hence substituting this we will again get an equation in r and h. Now we want to find the change in volume when radius is 2cm and the height is 3cm. hence we substitute the values to find the change in volume.
Complete step by step answer:
Now we know that if h is the height of cylinder and r is the radius of the cylinder then the volume of cylinder is given by $V=\pi {{r}^{2}}h$ .
Now let us differentiate the whole equation with respect to time.
Hence we have $\dfrac{dV}{dt}=\dfrac{d\left( \pi {{r}^{2}}h \right)}{dt}$
Now we know that $\pi $ is a constant value and hence we can take it out of the differentiation. Hence we get,
$\dfrac{dV}{dt}=\pi \dfrac{d\left( {{r}^{2}}h \right)}{dt}$
Now we know that differentiation of u.v is given by $u'v+v'u$ . Hence using this we get,
$\dfrac{dV}{dt}=\pi \left( \dfrac{hd\left( {{r}^{2}} \right)}{dt}+{{r}^{2}}\dfrac{d\left( h \right)}{dt} \right)$
Now again we know differentiation of $f\left( g\left( x \right) \right)$ is $f'\left( g\left( x \right) \right).g'\left( x \right)$ .
Hence we have $\dfrac{d\left( {{r}^{2}} \right)}{dt}=2r\dfrac{dr}{dt}$ now substituting this in the above equation we get,
$\dfrac{dV}{dt}=\pi \left( 2hr\dfrac{dr}{dt}+{{r}^{2}}\dfrac{dh}{dt} \right)$
Now we are given that the radius of a right circular cylinder increases at the rate of 0.1 cm per minute, and the height decreases at the rate of 0.2 cm per minute.
Hence we have $\dfrac{dh}{dt}=-0.2$ and $\dfrac{dr}{dt}=0.1$ . Now substituting this in the above equation we get,
$\dfrac{dV}{dt}=\pi \left( 2hr\left( 0.1 \right)+{{r}^{2}}\left( -0.2 \right) \right)$
Now we want to calculate the change in volume when r = 2 and h = 3. Hence substituting the values in the above equation we get,
$\begin{align}
& \dfrac{dV}{dt}=\pi \left( 2\left( 2 \right)\left( 3 \right)\left( 0.1 \right)-\left( {{2}^{2}} \right)\left( 0.2 \right) \right) \\
& \Rightarrow \dfrac{dV}{dt}=\pi \left( 1.2-0.8 \right) \\
& \Rightarrow \dfrac{dV}{dt}=0.4\pi \\
\end{align}$
Hence the change in volume is $0.4\pi c{{m}^{3}}$ per minute.
Note: Now note that since we have the height is decreasing, we have used negative signs while substituting the values. Also note that since we are differentiating with respect to t ${{r}^{2}}$ becomes an implicit function as r is itself a function of time t.
Complete step by step answer:
Now we know that if h is the height of cylinder and r is the radius of the cylinder then the volume of cylinder is given by $V=\pi {{r}^{2}}h$ .
Now let us differentiate the whole equation with respect to time.
Hence we have $\dfrac{dV}{dt}=\dfrac{d\left( \pi {{r}^{2}}h \right)}{dt}$
Now we know that $\pi $ is a constant value and hence we can take it out of the differentiation. Hence we get,
$\dfrac{dV}{dt}=\pi \dfrac{d\left( {{r}^{2}}h \right)}{dt}$
Now we know that differentiation of u.v is given by $u'v+v'u$ . Hence using this we get,
$\dfrac{dV}{dt}=\pi \left( \dfrac{hd\left( {{r}^{2}} \right)}{dt}+{{r}^{2}}\dfrac{d\left( h \right)}{dt} \right)$
Now again we know differentiation of $f\left( g\left( x \right) \right)$ is $f'\left( g\left( x \right) \right).g'\left( x \right)$ .
Hence we have $\dfrac{d\left( {{r}^{2}} \right)}{dt}=2r\dfrac{dr}{dt}$ now substituting this in the above equation we get,
$\dfrac{dV}{dt}=\pi \left( 2hr\dfrac{dr}{dt}+{{r}^{2}}\dfrac{dh}{dt} \right)$
Now we are given that the radius of a right circular cylinder increases at the rate of 0.1 cm per minute, and the height decreases at the rate of 0.2 cm per minute.
Hence we have $\dfrac{dh}{dt}=-0.2$ and $\dfrac{dr}{dt}=0.1$ . Now substituting this in the above equation we get,
$\dfrac{dV}{dt}=\pi \left( 2hr\left( 0.1 \right)+{{r}^{2}}\left( -0.2 \right) \right)$
Now we want to calculate the change in volume when r = 2 and h = 3. Hence substituting the values in the above equation we get,
$\begin{align}
& \dfrac{dV}{dt}=\pi \left( 2\left( 2 \right)\left( 3 \right)\left( 0.1 \right)-\left( {{2}^{2}} \right)\left( 0.2 \right) \right) \\
& \Rightarrow \dfrac{dV}{dt}=\pi \left( 1.2-0.8 \right) \\
& \Rightarrow \dfrac{dV}{dt}=0.4\pi \\
\end{align}$
Hence the change in volume is $0.4\pi c{{m}^{3}}$ per minute.
Note: Now note that since we have the height is decreasing, we have used negative signs while substituting the values. Also note that since we are differentiating with respect to t ${{r}^{2}}$ becomes an implicit function as r is itself a function of time t.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

