
The radius of a circle is 5 m. Find the circumference of a circle whose area is 49 times the area of the given circle.
Answer
539.7k+ views
Hint: In this question it is given that the radius of a circle is 5 m. We have to find the circumference of a circle whose area is 49 times the area of the given circle. So before that let us draw the diagram,
So to find the circumference of the bigger circle we need to find the radius of the bigger circle. So for this we need to know that, if the radius of a circle is r then the area of a circle is $$\pi r^{2}$$ and the circumference is $$2\pi r$$.
Complete step-by-step answer:
Here it is given the radius of the smaller circle is r=5 m.
Then the area of the circle,
$$A_{1}=\pi r^{2}\ m^{2}=\pi \times 5^{2}\ m^{2}=25\pi \ m^{2}$$
Now let the radius of the bigger circle is R meter.
Then the area of the bigger circle,
$$A_{2}=\pi R^{2}$$
Since, it is given that the area of the bigger circle is 49 times the area of smaller circle,
Therefore we can write,
$$A_{2}=49A_{1}$$
$$\Rightarrow \pi R^{2}=49\times 25\pi$$
$$\Rightarrow R^{2}=\dfrac{49\times 25\times \pi }{\pi }$$
$$\Rightarrow R^{2}=49\times 25$$
$$\Rightarrow R=\sqrt{49\times 25}$$
$$\Rightarrow R=\sqrt{7\times 7\times 5\times 5}$$
$$\Rightarrow R=7\times 5$$ [ since, $$\sqrt{a\times a}= a$$]
$$\Rightarrow R=35$$
Therefore, the radius of the bigger circle is 35 m.
Then the circumference =$$2\pi R$$
=$$2\times \dfrac{22}{7} \times 35$$ [
=$$2\times \dfrac{22}{7} \times 5\times 7$$
=$$2\times 22\times 5$$
=$$220$$ m.
Hence the circumference of the circle is 220 m.
Note: While solving any circle related problems you need to know that the area and circumference of a circle depends upon its radius, so to find those quantities you first need to find the radius. Also apart from that you might be thinking why we used the term smaller and bigger circle, because here it was given that the area of the new circle is 49 times the previous circle, so it implies that the area of the new circle is more than the given circle, because of this reason we have used the term bigger and smaller.

So to find the circumference of the bigger circle we need to find the radius of the bigger circle. So for this we need to know that, if the radius of a circle is r then the area of a circle is $$\pi r^{2}$$ and the circumference is $$2\pi r$$.
Complete step-by-step answer:
Here it is given the radius of the smaller circle is r=5 m.
Then the area of the circle,
$$A_{1}=\pi r^{2}\ m^{2}=\pi \times 5^{2}\ m^{2}=25\pi \ m^{2}$$
Now let the radius of the bigger circle is R meter.
Then the area of the bigger circle,
$$A_{2}=\pi R^{2}$$
Since, it is given that the area of the bigger circle is 49 times the area of smaller circle,
Therefore we can write,
$$A_{2}=49A_{1}$$
$$\Rightarrow \pi R^{2}=49\times 25\pi$$
$$\Rightarrow R^{2}=\dfrac{49\times 25\times \pi }{\pi }$$
$$\Rightarrow R^{2}=49\times 25$$
$$\Rightarrow R=\sqrt{49\times 25}$$
$$\Rightarrow R=\sqrt{7\times 7\times 5\times 5}$$
$$\Rightarrow R=7\times 5$$ [ since, $$\sqrt{a\times a}= a$$]
$$\Rightarrow R=35$$
Therefore, the radius of the bigger circle is 35 m.
Then the circumference =$$2\pi R$$
=$$2\times \dfrac{22}{7} \times 35$$ [
=$$2\times \dfrac{22}{7} \times 5\times 7$$
=$$2\times 22\times 5$$
=$$220$$ m.
Hence the circumference of the circle is 220 m.
Note: While solving any circle related problems you need to know that the area and circumference of a circle depends upon its radius, so to find those quantities you first need to find the radius. Also apart from that you might be thinking why we used the term smaller and bigger circle, because here it was given that the area of the new circle is 49 times the previous circle, so it implies that the area of the new circle is more than the given circle, because of this reason we have used the term bigger and smaller.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Name 10 Living and Non living things class 9 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

In which of the following the direction of ocean currents class 9 social science CBSE

On an outline map of India show its neighbouring c class 9 social science CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE
