
The product of two consecutive integers is always divisible by 2.
[a] True
[b] False.
Answer
513.5k+ views
Hint: Use the fact that if n is odd, then n+1 is even and if n is even, then n+1 is odd. Use the fact that two consecutive integers are of form {n,n+1}. Think what happens when we multiply an odd integer and an even integer. Think whether the result will be even or odd. Alternatively use the fact that $^{n+1}{{C}_{2}}$ is an integer. Alternatively, you can use Euclid's division lemma to prove the result.
Complete step-by-step answer:
Let the integers be n and n+1
We have either n is even, or n is odd
If n is even, we have n+1 is odd.
Now, we know that if c divides a, then c divides ab.
Since 2 divides n, we have 2 divides n(n+1).
Hence n(n+1) is divisible.
If n is odd:
Then we have n+1 is even.
Now since 2 divides n+1, hence 2 divides n(n+1).
Hence n(n+1) is even.
Hence in both the cases n(n+1) is even.
Hence n(n+1) is always even.
Hence the product of two consecutive integers is always even.
Hence the given statement is true.
Note: [1] Alternatively, we have
The number of ways in which 2 objects can be selected from n+1 objects is an integer.
Hence $^{n+1}{{C}_{2}}$ is an integer.
So let $^{n+1}{{C}_{2}}=k$
Hence, we have
$\begin{align}
& \dfrac{\left( n+1 \right)!}{2!\left( n-1 \right)!}=k \\
& \Rightarrow \dfrac{\left( n+1 \right)\left( n \right)\left( n-1 \right)!}{2\left( n-1 \right)!}=k \\
& \Rightarrow n\left( n+1 \right)=2k. \\
\end{align}$
Hence the product of two consecutive integers is divisible by 2.
Hence the product of two consecutive integers is even.
[2] Alternatively, we have
If n is an integer then by Euclid's division lemma, we have
n = 2q+r, where q is an integer and r = 0 or 1
Hence any integer is of one of the form 2q, 2q+1.
If n = 2q, then we have
n+1 = 2q+1
Hence n(n+1) = 2(q(2q+1)) which is even
If n = 2q+1, then we have
n+1 = 2q+2 = 2(q+1)
Hence n(n+1) = 2((2q+1)(q+1)), which is even.
Hence n(n+1) is always even.
Hence the product of two consecutive integers is always divisible by 2.
[3] product of r consecutive integers is divisible r!
Complete step-by-step answer:
Let the integers be n and n+1
We have either n is even, or n is odd
If n is even, we have n+1 is odd.
Now, we know that if c divides a, then c divides ab.
Since 2 divides n, we have 2 divides n(n+1).
Hence n(n+1) is divisible.
If n is odd:
Then we have n+1 is even.
Now since 2 divides n+1, hence 2 divides n(n+1).
Hence n(n+1) is even.
Hence in both the cases n(n+1) is even.
Hence n(n+1) is always even.
Hence the product of two consecutive integers is always even.
Hence the given statement is true.
Note: [1] Alternatively, we have
The number of ways in which 2 objects can be selected from n+1 objects is an integer.
Hence $^{n+1}{{C}_{2}}$ is an integer.
So let $^{n+1}{{C}_{2}}=k$
Hence, we have
$\begin{align}
& \dfrac{\left( n+1 \right)!}{2!\left( n-1 \right)!}=k \\
& \Rightarrow \dfrac{\left( n+1 \right)\left( n \right)\left( n-1 \right)!}{2\left( n-1 \right)!}=k \\
& \Rightarrow n\left( n+1 \right)=2k. \\
\end{align}$
Hence the product of two consecutive integers is divisible by 2.
Hence the product of two consecutive integers is even.
[2] Alternatively, we have
If n is an integer then by Euclid's division lemma, we have
n = 2q+r, where q is an integer and r = 0 or 1
Hence any integer is of one of the form 2q, 2q+1.
If n = 2q, then we have
n+1 = 2q+1
Hence n(n+1) = 2(q(2q+1)) which is even
If n = 2q+1, then we have
n+1 = 2q+2 = 2(q+1)
Hence n(n+1) = 2((2q+1)(q+1)), which is even.
Hence n(n+1) is always even.
Hence the product of two consecutive integers is always divisible by 2.
[3] product of r consecutive integers is divisible r!
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

