
The product of \[\sqrt[3]{2}\]and \[\sqrt 2 \] is
A. \[\sqrt[6]{{32}}\]
B. \[\sqrt[6]{{24}}\]
C. \[\sqrt[6]{{16}}\]
D. \[\sqrt[6]{4}\]
Answer
511.8k+ views
Hint: First we will rewrite the roots of the number \[\sqrt[3]{2}\] and \[\sqrt 2 \] in the fraction form and when the bases in the above expression are same, then the base is taken common and powers are added. Then we will rewrite the fractions in the power into the root form to find the required value.
Complete step by step answer:
We are given that \[\sqrt[3]{2} \times \sqrt 2 \].
Rewriting the roots of the number \[\sqrt[3]{2}\] and \[\sqrt 2 \] in the fraction form, we get
\[ \Rightarrow {2^{\dfrac{1}{3}}} \times {2^{\dfrac{1}{2}}}\]
We know when the bases in the above expression are same, then the base is taken common and powers are added, that is, \[{a^n} \cdot {a^m} = {a^{m + n}}\], we get
\[
\Rightarrow {2^{\dfrac{1}{3} + \dfrac{1}{2}}} \\
\Rightarrow {2^{\dfrac{{2 + 3}}{6}}} \\
\Rightarrow {2^{\dfrac{5}{6}}} \\
\]
Using the property of powers that \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] in the above equation, we get
\[
\Rightarrow {\left( {{2^5}} \right)^{\dfrac{1}{6}}} \\
\Rightarrow {32^{\dfrac{1}{6}}} \\
\]
Rewriting the fractions in the power into the root form, we get
\[ \Rightarrow \sqrt[6]{{32}}\]
Thus, the required value is \[\sqrt[6]{{32}}\]
Hence, option A is the right answer
Note: In solving this question, students must know that when the bases are same then their values are added, but when the bases are different, then you cannot multiply the terms. Some students try to solve the product in the root form, which gets even harder. Do not multiply the powers of the same bases while multiplying, the answer will be wrong.
Complete step by step answer:
We are given that \[\sqrt[3]{2} \times \sqrt 2 \].
Rewriting the roots of the number \[\sqrt[3]{2}\] and \[\sqrt 2 \] in the fraction form, we get
\[ \Rightarrow {2^{\dfrac{1}{3}}} \times {2^{\dfrac{1}{2}}}\]
We know when the bases in the above expression are same, then the base is taken common and powers are added, that is, \[{a^n} \cdot {a^m} = {a^{m + n}}\], we get
\[
\Rightarrow {2^{\dfrac{1}{3} + \dfrac{1}{2}}} \\
\Rightarrow {2^{\dfrac{{2 + 3}}{6}}} \\
\Rightarrow {2^{\dfrac{5}{6}}} \\
\]
Using the property of powers that \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] in the above equation, we get
\[
\Rightarrow {\left( {{2^5}} \right)^{\dfrac{1}{6}}} \\
\Rightarrow {32^{\dfrac{1}{6}}} \\
\]
Rewriting the fractions in the power into the root form, we get
\[ \Rightarrow \sqrt[6]{{32}}\]
Thus, the required value is \[\sqrt[6]{{32}}\]
Hence, option A is the right answer
Note: In solving this question, students must know that when the bases are same then their values are added, but when the bases are different, then you cannot multiply the terms. Some students try to solve the product in the root form, which gets even harder. Do not multiply the powers of the same bases while multiplying, the answer will be wrong.
Recently Updated Pages
Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

How many ounces are in 500 mL class 8 maths CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE

How many ten lakhs are in one crore-class-8-maths-CBSE

Explain land use pattern in India and why has the land class 8 social science CBSE

One cusec is equal to how many liters class 8 maths CBSE
