
The product of all values of $ x $ satisfying the equation $ {\sin ^{ - 1}}\cos \left( {\dfrac{{2{x^2} + 10\left| x \right| + 4}}{{{x^2} + 5\left| x \right| + 3}}} \right) = \cot \left\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18\left| x \right|}}{{9\left| x \right|}}} \right)} \right\} + \dfrac{\pi }{2} $ is
(A) $ 9 $
(B) $ - 9 $
(C) $ - 3 $
(D) $ - 1 $
Answer
581.4k+ views
Hint: This type of equation will be solved by the use of the basic concept of inverse trigonometric and also angle property of trigonometric.
Complete step-by-step answer:
$ {\sin ^{ - 1}}\cos \left( {\dfrac{{2{x^2} + 10\left| x \right| + 4}}{{{x^2} + 5\left| x \right| + 3}}} \right) = \cot \left\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18\left| x \right|}}{{9\left| x \right|}}} \right)} \right\} + \dfrac{\pi }{2} $ . . . . (given)
We have to find the product of real value of $ x $ which satisfies the equation.
So, the equation can be written as
$\Rightarrow {\sin ^{ - 1}}\cos \left( {\dfrac{{2{x^2} + 10x + 4}}{{{x^2} + 5x + 3}}} \right) = \cot \left\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18x}}{{9x}}} \right)} \right\} + \dfrac{\pi }{2} $ . . . . By $ \left( {\left| x \right| = x} \right) $
By changing $ \cos $ function to $ \sin $ function in left hand side of the above equation we get,
$\Rightarrow {\sin ^{ - 1}}\sin \left[ {\dfrac{\pi }{2} - \left( {\dfrac{{2{x^2} + 10x4}}{{{x^2} + 5x + 3}}} \right)} \right] = \cot \left\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18x}}{{9x}}} \right)} \right\} + \dfrac{\pi }{2} $ . . . . $ \cos \theta = \sin \left( {\dfrac{\pi }{2} - \theta } \right) $
Applying the inverse trigonometric property in the both side we get,
$ \dfrac{\pi }{2} - \left( {\dfrac{{2{x^2} + 10x + 4}}{{{x^2} + 5x + 3}}} \right) = \dfrac{{2 - 18x}}{{9x}} + \dfrac{\pi }{2} $
On simplifying the above equation, we get,
$ - \dfrac{{2{x^2} + 10x + 4}}{{{x^2} + 5x + 3}} = \dfrac{{2 - 18x}}{{9x}} $
On cross multiplying the above equation we get,
$ - 18{x^3} - 90{x^2} - 36x = 2{x^2} + 10x + 6 - 18{x^3} - 90x - 54x $
By rearranging above equation we get,
$\Rightarrow 2{x^2} - 8x + 6 = 0 $
Now, factorize the above equation to find the value of $ x $
$\Rightarrow \left( {x - 1} \right)\left( {x - 3} \right) = 0 $
Since, there are two values of $ x $
$ x = 1 $
$ x = 3 $
Therefore, the product of two real roots $ = 3 \times 1 = 3 $
Hence the product of the real roots which satisfies the given equation is $ 3 $ .
Therefore from the above explanation the correct option is [] $ 3 $ .
Note: In this question we use inverse trigonometric $ \left[ {\cot .ca{t^{ - 1}}\left( \theta \right) = \theta \sin .{{\sin }^{ - 1}}\left( \theta \right)} \right] $
Also used $ \cos \theta = \sin \left[ {\dfrac{\pi }{2} - \theta } \right] $ , we must be careful on this.
Complete step-by-step answer:
$ {\sin ^{ - 1}}\cos \left( {\dfrac{{2{x^2} + 10\left| x \right| + 4}}{{{x^2} + 5\left| x \right| + 3}}} \right) = \cot \left\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18\left| x \right|}}{{9\left| x \right|}}} \right)} \right\} + \dfrac{\pi }{2} $ . . . . (given)
We have to find the product of real value of $ x $ which satisfies the equation.
So, the equation can be written as
$\Rightarrow {\sin ^{ - 1}}\cos \left( {\dfrac{{2{x^2} + 10x + 4}}{{{x^2} + 5x + 3}}} \right) = \cot \left\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18x}}{{9x}}} \right)} \right\} + \dfrac{\pi }{2} $ . . . . By $ \left( {\left| x \right| = x} \right) $
By changing $ \cos $ function to $ \sin $ function in left hand side of the above equation we get,
$\Rightarrow {\sin ^{ - 1}}\sin \left[ {\dfrac{\pi }{2} - \left( {\dfrac{{2{x^2} + 10x4}}{{{x^2} + 5x + 3}}} \right)} \right] = \cot \left\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18x}}{{9x}}} \right)} \right\} + \dfrac{\pi }{2} $ . . . . $ \cos \theta = \sin \left( {\dfrac{\pi }{2} - \theta } \right) $
Applying the inverse trigonometric property in the both side we get,
$ \dfrac{\pi }{2} - \left( {\dfrac{{2{x^2} + 10x + 4}}{{{x^2} + 5x + 3}}} \right) = \dfrac{{2 - 18x}}{{9x}} + \dfrac{\pi }{2} $
On simplifying the above equation, we get,
$ - \dfrac{{2{x^2} + 10x + 4}}{{{x^2} + 5x + 3}} = \dfrac{{2 - 18x}}{{9x}} $
On cross multiplying the above equation we get,
$ - 18{x^3} - 90{x^2} - 36x = 2{x^2} + 10x + 6 - 18{x^3} - 90x - 54x $
By rearranging above equation we get,
$\Rightarrow 2{x^2} - 8x + 6 = 0 $
Now, factorize the above equation to find the value of $ x $
$\Rightarrow \left( {x - 1} \right)\left( {x - 3} \right) = 0 $
Since, there are two values of $ x $
$ x = 1 $
$ x = 3 $
Therefore, the product of two real roots $ = 3 \times 1 = 3 $
Hence the product of the real roots which satisfies the given equation is $ 3 $ .
Therefore from the above explanation the correct option is [] $ 3 $ .
Note: In this question we use inverse trigonometric $ \left[ {\cot .ca{t^{ - 1}}\left( \theta \right) = \theta \sin .{{\sin }^{ - 1}}\left( \theta \right)} \right] $
Also used $ \cos \theta = \sin \left[ {\dfrac{\pi }{2} - \theta } \right] $ , we must be careful on this.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

