
The product of all values of $ x $ satisfying the equation $ {\sin ^{ - 1}}\cos \left( {\dfrac{{2{x^2} + 10\left| x \right| + 4}}{{{x^2} + 5\left| x \right| + 3}}} \right) = \cot \left\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18\left| x \right|}}{{9\left| x \right|}}} \right)} \right\} + \dfrac{\pi }{2} $ is
(A) $ 9 $
(B) $ - 9 $
(C) $ - 3 $
(D) $ - 1 $
Answer
562.5k+ views
Hint: This type of equation will be solved by the use of the basic concept of inverse trigonometric and also angle property of trigonometric.
Complete step-by-step answer:
$ {\sin ^{ - 1}}\cos \left( {\dfrac{{2{x^2} + 10\left| x \right| + 4}}{{{x^2} + 5\left| x \right| + 3}}} \right) = \cot \left\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18\left| x \right|}}{{9\left| x \right|}}} \right)} \right\} + \dfrac{\pi }{2} $ . . . . (given)
We have to find the product of real value of $ x $ which satisfies the equation.
So, the equation can be written as
$\Rightarrow {\sin ^{ - 1}}\cos \left( {\dfrac{{2{x^2} + 10x + 4}}{{{x^2} + 5x + 3}}} \right) = \cot \left\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18x}}{{9x}}} \right)} \right\} + \dfrac{\pi }{2} $ . . . . By $ \left( {\left| x \right| = x} \right) $
By changing $ \cos $ function to $ \sin $ function in left hand side of the above equation we get,
$\Rightarrow {\sin ^{ - 1}}\sin \left[ {\dfrac{\pi }{2} - \left( {\dfrac{{2{x^2} + 10x4}}{{{x^2} + 5x + 3}}} \right)} \right] = \cot \left\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18x}}{{9x}}} \right)} \right\} + \dfrac{\pi }{2} $ . . . . $ \cos \theta = \sin \left( {\dfrac{\pi }{2} - \theta } \right) $
Applying the inverse trigonometric property in the both side we get,
$ \dfrac{\pi }{2} - \left( {\dfrac{{2{x^2} + 10x + 4}}{{{x^2} + 5x + 3}}} \right) = \dfrac{{2 - 18x}}{{9x}} + \dfrac{\pi }{2} $
On simplifying the above equation, we get,
$ - \dfrac{{2{x^2} + 10x + 4}}{{{x^2} + 5x + 3}} = \dfrac{{2 - 18x}}{{9x}} $
On cross multiplying the above equation we get,
$ - 18{x^3} - 90{x^2} - 36x = 2{x^2} + 10x + 6 - 18{x^3} - 90x - 54x $
By rearranging above equation we get,
$\Rightarrow 2{x^2} - 8x + 6 = 0 $
Now, factorize the above equation to find the value of $ x $
$\Rightarrow \left( {x - 1} \right)\left( {x - 3} \right) = 0 $
Since, there are two values of $ x $
$ x = 1 $
$ x = 3 $
Therefore, the product of two real roots $ = 3 \times 1 = 3 $
Hence the product of the real roots which satisfies the given equation is $ 3 $ .
Therefore from the above explanation the correct option is [] $ 3 $ .
Note: In this question we use inverse trigonometric $ \left[ {\cot .ca{t^{ - 1}}\left( \theta \right) = \theta \sin .{{\sin }^{ - 1}}\left( \theta \right)} \right] $
Also used $ \cos \theta = \sin \left[ {\dfrac{\pi }{2} - \theta } \right] $ , we must be careful on this.
Complete step-by-step answer:
$ {\sin ^{ - 1}}\cos \left( {\dfrac{{2{x^2} + 10\left| x \right| + 4}}{{{x^2} + 5\left| x \right| + 3}}} \right) = \cot \left\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18\left| x \right|}}{{9\left| x \right|}}} \right)} \right\} + \dfrac{\pi }{2} $ . . . . (given)
We have to find the product of real value of $ x $ which satisfies the equation.
So, the equation can be written as
$\Rightarrow {\sin ^{ - 1}}\cos \left( {\dfrac{{2{x^2} + 10x + 4}}{{{x^2} + 5x + 3}}} \right) = \cot \left\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18x}}{{9x}}} \right)} \right\} + \dfrac{\pi }{2} $ . . . . By $ \left( {\left| x \right| = x} \right) $
By changing $ \cos $ function to $ \sin $ function in left hand side of the above equation we get,
$\Rightarrow {\sin ^{ - 1}}\sin \left[ {\dfrac{\pi }{2} - \left( {\dfrac{{2{x^2} + 10x4}}{{{x^2} + 5x + 3}}} \right)} \right] = \cot \left\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18x}}{{9x}}} \right)} \right\} + \dfrac{\pi }{2} $ . . . . $ \cos \theta = \sin \left( {\dfrac{\pi }{2} - \theta } \right) $
Applying the inverse trigonometric property in the both side we get,
$ \dfrac{\pi }{2} - \left( {\dfrac{{2{x^2} + 10x + 4}}{{{x^2} + 5x + 3}}} \right) = \dfrac{{2 - 18x}}{{9x}} + \dfrac{\pi }{2} $
On simplifying the above equation, we get,
$ - \dfrac{{2{x^2} + 10x + 4}}{{{x^2} + 5x + 3}} = \dfrac{{2 - 18x}}{{9x}} $
On cross multiplying the above equation we get,
$ - 18{x^3} - 90{x^2} - 36x = 2{x^2} + 10x + 6 - 18{x^3} - 90x - 54x $
By rearranging above equation we get,
$\Rightarrow 2{x^2} - 8x + 6 = 0 $
Now, factorize the above equation to find the value of $ x $
$\Rightarrow \left( {x - 1} \right)\left( {x - 3} \right) = 0 $
Since, there are two values of $ x $
$ x = 1 $
$ x = 3 $
Therefore, the product of two real roots $ = 3 \times 1 = 3 $
Hence the product of the real roots which satisfies the given equation is $ 3 $ .
Therefore from the above explanation the correct option is [] $ 3 $ .
Note: In this question we use inverse trigonometric $ \left[ {\cot .ca{t^{ - 1}}\left( \theta \right) = \theta \sin .{{\sin }^{ - 1}}\left( \theta \right)} \right] $
Also used $ \cos \theta = \sin \left[ {\dfrac{\pi }{2} - \theta } \right] $ , we must be careful on this.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

