
The probability of a man hitting a target is$1/2$. How many times must he fire so that the probability of hitting the target at least once is more than$90\% $.
Answer
594.6k+ views
Hint: Use Binomial Distribution Formula, ${\text{P(X = }}x{\text{)}}{{\text{ = }}^{\text{n}}}{{\text{C}}_x}{{\text{p}}^x}{{\text{q}}^{{\text{n}} - x}}$
Probability of man hitting the target, ${\text{p = }}\dfrac{1}{2}$
Probability of man not hitting the target ,${\text{q = 1 - p = 1 - }}\dfrac{1}{2} = \dfrac{1}{2}$
Complete step-by-step answer:
Using Binomial Distribution:
${\text{P(X = }}x{\text{)}}{{\text{ = }}^{\text{n}}}{{\text{C}}_x}{{\text{p}}^x}{{\text{q}}^{{\text{n}} - x}}$
In this question we have to find the value of n, that is the number of times he fire so that the probability of hitting the target at least once is more than $90\% $.
$ \Rightarrow {\text{P(X}} \geqslant {\text{1) > 0}}{\text{.9}}$ (given)
$ \Rightarrow 1 - {\text{P(X = 0) > 0}}{\text{.9}}$
$ \Rightarrow 1{ - ^{\text{n}}}{{\text{C}}_0}{(\dfrac{1}{2})^0}{(\dfrac{1}{2})^{{\text{n - 0}}}} > 0.9$
$ \Rightarrow 1 - \dfrac{1}{{{2^{\text{n}}}}} > 0.9$
$ \Rightarrow 1 - 0.9 > \dfrac{1}{{{2^{\text{n}}}}}$
$ \Rightarrow 0.1 > \dfrac{1}{{{2^{\text{n}}}}}$
$ \Rightarrow {2^{\text{n}}} > \dfrac{1}{{0.1}}$
$ \Rightarrow {2^{\text{n}}} > 10$
$ \Rightarrow {\text{n = 4,5,}}......$
$\therefore $the smallest value ,${\text{n = 4}}$
Note: The binomial distribution is frequently used to model the number of successes in a sample of size n drawn with replacement from a population of size N. In these types of problems use Binomial Distribution Formula, ${\text{P(X = }}x{\text{)}}{{\text{ = }}^{\text{n}}}{{\text{C}}_x}{{\text{p}}^x}{{\text{q}}^{{\text{n}} - x}}$.
Probability of man hitting the target, ${\text{p = }}\dfrac{1}{2}$
Probability of man not hitting the target ,${\text{q = 1 - p = 1 - }}\dfrac{1}{2} = \dfrac{1}{2}$
Complete step-by-step answer:
Using Binomial Distribution:
${\text{P(X = }}x{\text{)}}{{\text{ = }}^{\text{n}}}{{\text{C}}_x}{{\text{p}}^x}{{\text{q}}^{{\text{n}} - x}}$
In this question we have to find the value of n, that is the number of times he fire so that the probability of hitting the target at least once is more than $90\% $.
$ \Rightarrow {\text{P(X}} \geqslant {\text{1) > 0}}{\text{.9}}$ (given)
$ \Rightarrow 1 - {\text{P(X = 0) > 0}}{\text{.9}}$
$ \Rightarrow 1{ - ^{\text{n}}}{{\text{C}}_0}{(\dfrac{1}{2})^0}{(\dfrac{1}{2})^{{\text{n - 0}}}} > 0.9$
$ \Rightarrow 1 - \dfrac{1}{{{2^{\text{n}}}}} > 0.9$
$ \Rightarrow 1 - 0.9 > \dfrac{1}{{{2^{\text{n}}}}}$
$ \Rightarrow 0.1 > \dfrac{1}{{{2^{\text{n}}}}}$
$ \Rightarrow {2^{\text{n}}} > \dfrac{1}{{0.1}}$
$ \Rightarrow {2^{\text{n}}} > 10$
$ \Rightarrow {\text{n = 4,5,}}......$
$\therefore $the smallest value ,${\text{n = 4}}$
Note: The binomial distribution is frequently used to model the number of successes in a sample of size n drawn with replacement from a population of size N. In these types of problems use Binomial Distribution Formula, ${\text{P(X = }}x{\text{)}}{{\text{ = }}^{\text{n}}}{{\text{C}}_x}{{\text{p}}^x}{{\text{q}}^{{\text{n}} - x}}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

