
The probability for a contractor to get a road contract is $ \dfrac{2}{3} $ and to get a building contract is $ \dfrac{5}{9} $ . The probability to get at least one contract is $ \dfrac{4}{5}. $ Find the probability that he gets both the contracts.
Answer
521.1k+ views
Hint: If $ A $ and $ B $ are any two events and are not disjoint, then
$ P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right) $ ._ _ _ _ _ _ _ _ _ _ $ \left( 1 \right) $
$ A $ and $ B $ are the subsets of sample space S.
This is the additional theorem of probability.
Complete step-by-step answer:
As we know the addition theorem,
$ P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right) $
Let, $ P\left( A \right) $ be the probability of the contractor to get a road contract $ = \dfrac{2}{3}. $
Let, $ P\left( B \right) $ be the probability of the contractor to get a building contract $ = \dfrac{5}{9}. $
Let, $ P\left( {A \cup B} \right) $ be the probability of the contractor to get at least one contract $ = \dfrac{4}{5}. $
Let, $ P\left( {A \cap B} \right) $ be the probability of contractor to get both contract $ = ? $
Now, using equation $ \left( 1 \right) $ ,
$ \Rightarrow $ $ P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right) $
$ \Rightarrow \dfrac{4}{5} = \dfrac{3}{2} + \dfrac{5}{9} - P\left( {A \cap B} \right) $ $ $
$
\Rightarrow P\left( {A \cap B} \right) = \dfrac{2}{3} + \dfrac{5}{9} - \dfrac{4}{5} \\
\Rightarrow P\left( {A \cap B} \right) = \dfrac{{45 \times 2 + 5 \times 15 - 4 \times 27}}{{135}} \\
\Rightarrow P\left( {A \cap B} \right) = \dfrac{{90 + 75 - 108}}{{135}} \\
\Rightarrow P\left( {A \cap B} \right) = \dfrac{{57}}{{135}} \\
\Rightarrow P\left( {A \cap B} \right) = \dfrac{{19}}{{45}}. \;
$
Therefore, $ P\left( {A \cap B} \right) $ of contractor to get both contract is $ \dfrac{{19}}{{45}}. $
So, the correct answer is “ $ \dfrac{{19}}{{45}} $ ”.
Note: $ \Rightarrow $ When selecting terms between $ P\left( {A \cap B} \right) $ and $ P\left( {A \cup B} \right) $ , choose wisely, if any terms goes wrong then the whole answer goes wrong.
$ \Rightarrow $ There is one other important theorem, multiplication theorem,
$ P\left( {A \cap B} \right) = P\left( A \right).P\left( B \right) $ .
$ P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right) $ ._ _ _ _ _ _ _ _ _ _ $ \left( 1 \right) $
$ A $ and $ B $ are the subsets of sample space S.
This is the additional theorem of probability.
Complete step-by-step answer:
As we know the addition theorem,
$ P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right) $
Let, $ P\left( A \right) $ be the probability of the contractor to get a road contract $ = \dfrac{2}{3}. $
Let, $ P\left( B \right) $ be the probability of the contractor to get a building contract $ = \dfrac{5}{9}. $
Let, $ P\left( {A \cup B} \right) $ be the probability of the contractor to get at least one contract $ = \dfrac{4}{5}. $
Let, $ P\left( {A \cap B} \right) $ be the probability of contractor to get both contract $ = ? $
Now, using equation $ \left( 1 \right) $ ,
$ \Rightarrow $ $ P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right) $
$ \Rightarrow \dfrac{4}{5} = \dfrac{3}{2} + \dfrac{5}{9} - P\left( {A \cap B} \right) $ $ $
$
\Rightarrow P\left( {A \cap B} \right) = \dfrac{2}{3} + \dfrac{5}{9} - \dfrac{4}{5} \\
\Rightarrow P\left( {A \cap B} \right) = \dfrac{{45 \times 2 + 5 \times 15 - 4 \times 27}}{{135}} \\
\Rightarrow P\left( {A \cap B} \right) = \dfrac{{90 + 75 - 108}}{{135}} \\
\Rightarrow P\left( {A \cap B} \right) = \dfrac{{57}}{{135}} \\
\Rightarrow P\left( {A \cap B} \right) = \dfrac{{19}}{{45}}. \;
$
Therefore, $ P\left( {A \cap B} \right) $ of contractor to get both contract is $ \dfrac{{19}}{{45}}. $
So, the correct answer is “ $ \dfrac{{19}}{{45}} $ ”.
Note: $ \Rightarrow $ When selecting terms between $ P\left( {A \cap B} \right) $ and $ P\left( {A \cup B} \right) $ , choose wisely, if any terms goes wrong then the whole answer goes wrong.
$ \Rightarrow $ There is one other important theorem, multiplication theorem,
$ P\left( {A \cap B} \right) = P\left( A \right).P\left( B \right) $ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

