
The potential energy of a force field \[\vec F\] is given by $U(x,y) = \sin (x + y)$. The force acting on the particle of mass m at $\left( {0,\dfrac{\pi }{4}} \right)$ is
A) 1
B) $\sqrt 2 $
C) $\dfrac{1}{{\sqrt 2 }}$
D) 0
Answer
568.5k+ views
Hint:Here we have to use the concept of the partial derivative. The partial derivative is a derivative of a function of two or more variables with respect to one variable, the other(s) will be treated as constant. Partial derivatives are used in vector calculus and differential geometry. Taking the partial derivatives of the given equation and then using the point given will give us a very easy solution to the question in hand. For this question, we have to use the partial derivative equation.
Formula Used:For example, if we have an equation $f(x,y) = {x^2}y$.
Then taking partial derivatives we get,
$\dfrac{{\partial f}}{{\partial x}} = \dfrac{\partial }{{\partial x}}{x^2}y$, if we consider y as constant, we get,
$\dfrac{{\partial f}}{{\partial x}} = 2xy$.
Again, from the equation
$\dfrac{{\partial f}}{{\partial x}} = \dfrac{\partial }{{\partial x}}{x^2}y$, if we consider x as constant, we get,
$\dfrac{{\partial f}}{{\partial x}} = {x^2}.1$
Complete step by step answer:
Given in the equation we have, Force \[\vec F\] is
$U(x,y) =\sin (x + y)$.
Here, taking partial derivatives we get,
$\vec F = \dfrac{{ - \partial U}}{{\partial x}}\hat i - \dfrac{{ - \partial U}}{{\partial x}}\hat j$.
This will further give us $\vec F = - \cos (x + y)\hat i - \cos (x + y)\hat j$.
Further equating we get at the point $\left( {0,\dfrac{\pi }{4}} \right)$,
$\vec F = - \cos (\dfrac{\pi }{4})\hat i - \cos (\dfrac{\pi }{4})\hat j$ .
Putting the values of $\cos (\dfrac{\pi }{4})$, we have,
$\vec F = - \dfrac{1}{{\sqrt 2 }}\hat i - \dfrac{1}{{\sqrt 2 }}\hat j = - \dfrac{1}{{\sqrt 2 }}(\hat i + \hat j)$.
Now the value of $\hat i + \hat j = \sqrt {{1^2} + {1^2}} = \sqrt 2 $ as \[\hat i = {( - 1)^2}\] , and \[\hat j = {( - 1)^2}\].
This will finally give us,
$\left| {\vec F} \right| = \left| { - \dfrac{1}{{\sqrt 2 }}(\hat i + \hat j)} \right| = \left| { - \dfrac{1}{{\sqrt 2 }}} \right| \times \sqrt 2 = 1$ as $\left| { - \dfrac{1}{{\sqrt 2 }}} \right| = \dfrac{1}{{\sqrt 2 }}$.
Thus, our final answer comes out to be 1N which is option number (A).
Note:Alternate method to solve the question. This method is a concise or shorter method to solve the same question. If we are solving a numerical using this method is beneficial but when giving a subjective answer, we should follow the first method.
Given the force \[\vec F\]as
$U(x,y) =\sin (x + y)$.
Taking derivative, we get,
\[\vec F = - \dfrac{{dU}}{{dx}} - \dfrac{{d\sin (x + y)}}{{dx}} = \cos (x + y)\].
For the given point $\left( {0,\dfrac{\pi }{4}} \right)$ can rewrite the equation,
\[\vec F = \cos (x + y) = \cos (0 + \dfrac{\pi }{4}) = \cos (\dfrac{\pi }{4}) = 1\].
So, the final result we get is 1 which is the option (A).
Formula Used:For example, if we have an equation $f(x,y) = {x^2}y$.
Then taking partial derivatives we get,
$\dfrac{{\partial f}}{{\partial x}} = \dfrac{\partial }{{\partial x}}{x^2}y$, if we consider y as constant, we get,
$\dfrac{{\partial f}}{{\partial x}} = 2xy$.
Again, from the equation
$\dfrac{{\partial f}}{{\partial x}} = \dfrac{\partial }{{\partial x}}{x^2}y$, if we consider x as constant, we get,
$\dfrac{{\partial f}}{{\partial x}} = {x^2}.1$
Complete step by step answer:
Given in the equation we have, Force \[\vec F\] is
$U(x,y) =\sin (x + y)$.
Here, taking partial derivatives we get,
$\vec F = \dfrac{{ - \partial U}}{{\partial x}}\hat i - \dfrac{{ - \partial U}}{{\partial x}}\hat j$.
This will further give us $\vec F = - \cos (x + y)\hat i - \cos (x + y)\hat j$.
Further equating we get at the point $\left( {0,\dfrac{\pi }{4}} \right)$,
$\vec F = - \cos (\dfrac{\pi }{4})\hat i - \cos (\dfrac{\pi }{4})\hat j$ .
Putting the values of $\cos (\dfrac{\pi }{4})$, we have,
$\vec F = - \dfrac{1}{{\sqrt 2 }}\hat i - \dfrac{1}{{\sqrt 2 }}\hat j = - \dfrac{1}{{\sqrt 2 }}(\hat i + \hat j)$.
Now the value of $\hat i + \hat j = \sqrt {{1^2} + {1^2}} = \sqrt 2 $ as \[\hat i = {( - 1)^2}\] , and \[\hat j = {( - 1)^2}\].
This will finally give us,
$\left| {\vec F} \right| = \left| { - \dfrac{1}{{\sqrt 2 }}(\hat i + \hat j)} \right| = \left| { - \dfrac{1}{{\sqrt 2 }}} \right| \times \sqrt 2 = 1$ as $\left| { - \dfrac{1}{{\sqrt 2 }}} \right| = \dfrac{1}{{\sqrt 2 }}$.
Thus, our final answer comes out to be 1N which is option number (A).
Note:Alternate method to solve the question. This method is a concise or shorter method to solve the same question. If we are solving a numerical using this method is beneficial but when giving a subjective answer, we should follow the first method.
Given the force \[\vec F\]as
$U(x,y) =\sin (x + y)$.
Taking derivative, we get,
\[\vec F = - \dfrac{{dU}}{{dx}} - \dfrac{{d\sin (x + y)}}{{dx}} = \cos (x + y)\].
For the given point $\left( {0,\dfrac{\pi }{4}} \right)$ can rewrite the equation,
\[\vec F = \cos (x + y) = \cos (0 + \dfrac{\pi }{4}) = \cos (\dfrac{\pi }{4}) = 1\].
So, the final result we get is 1 which is the option (A).
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Using Huygens wave theory derive Snells law of ref class 12 physics CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

