
The potential differences across the resistance, capacitance and inductance are 80 V, 40 V and 100 V respectively in an L-C-R circuit. The power factor of this circuit is
A. 0.4
B. 0.5
C. 0.8
D. 1.0
Answer
576.6k+ views
Hint: In this solution, the power factor is the ratio of the potential difference of resistance to the square root of sum of potential difference across resistor and potential difference across capacitor and inductor.
Complete step by step solution:
Given:
The L-C-R circuit has the potential differences across the resistance, capacitance and inductance; the given values are as follows.
The potential difference across the resistance is ${V_R} = 80\;{\rm{V}}$.
The potential difference across the capacitance is ${V_c} = 40\;{\rm{V}}$.
The potential difference across the inductance is ${V_L} = 100\;{\rm{V}}$.
The power factor is the ratio dissipated current and the product of the voltage and the current in the circuit, then
The equation of the power factor in the L-C-R circuit is,
${p_f} = \dfrac{{{V_R}}}{{\sqrt {{V_R}^2 + \left( {{V_L}^2 - {V_C}^2} \right)} }}$
Here, ${p_f}$ is the power factor of the L-C-R circuit.
Substitute the values in the above equation.
\[\begin{array}{l}
{p_f} = \dfrac{{{V_R}}}{{\sqrt {{V_R}^2 + \left( {{V_L}^2 - {V_C}^2} \right)} }}\\
{p_f} = \dfrac{{80}}{{\sqrt {{{80}^2} + {{\left( {100 - 40} \right)}^2}} }}\\
= \dfrac{{80}}{{\sqrt {6400 + 3600} }}\\
= \dfrac{{80}}{{100}}\\
= 0.8\,
\end{array}\]
Therefore, the option is (C), the correct answer is 0.8.
Note: Make sure to use a negative sign to the potential difference of the capacitance and if should be subtracted from the Potential difference of the inductance and not with the resistance. Remember the potential difference of resistance always be in the numerator. Due to the ratio of the same units, there will be no units to the power factor.
Complete step by step solution:
Given:
The L-C-R circuit has the potential differences across the resistance, capacitance and inductance; the given values are as follows.
The potential difference across the resistance is ${V_R} = 80\;{\rm{V}}$.
The potential difference across the capacitance is ${V_c} = 40\;{\rm{V}}$.
The potential difference across the inductance is ${V_L} = 100\;{\rm{V}}$.
The power factor is the ratio dissipated current and the product of the voltage and the current in the circuit, then
The equation of the power factor in the L-C-R circuit is,
${p_f} = \dfrac{{{V_R}}}{{\sqrt {{V_R}^2 + \left( {{V_L}^2 - {V_C}^2} \right)} }}$
Here, ${p_f}$ is the power factor of the L-C-R circuit.
Substitute the values in the above equation.
\[\begin{array}{l}
{p_f} = \dfrac{{{V_R}}}{{\sqrt {{V_R}^2 + \left( {{V_L}^2 - {V_C}^2} \right)} }}\\
{p_f} = \dfrac{{80}}{{\sqrt {{{80}^2} + {{\left( {100 - 40} \right)}^2}} }}\\
= \dfrac{{80}}{{\sqrt {6400 + 3600} }}\\
= \dfrac{{80}}{{100}}\\
= 0.8\,
\end{array}\]
Therefore, the option is (C), the correct answer is 0.8.
Note: Make sure to use a negative sign to the potential difference of the capacitance and if should be subtracted from the Potential difference of the inductance and not with the resistance. Remember the potential difference of resistance always be in the numerator. Due to the ratio of the same units, there will be no units to the power factor.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

