
The positive integer value of \[n > 3\] satisfying the equation \[\dfrac{1}{{\sin \left( {\dfrac{\pi }{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}} + \dfrac{1}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)}}\]is
A. 7
B. 6
C. 4
D. 5
Answer
551.7k+ views
Hint: We shift one of the values from RHS to LHS and take LCM. Use the formula of \[\sin A - \sin B\] in the numerator. Cancel possible terms from numerator and denominator and bring out all the terms with the same angle on one side of the equation. Take inverse function on both sides and equate the angles.
* \[\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\]
Complete step by step answer:
We are given the equation \[\dfrac{1}{{\sin \left( {\dfrac{\pi }{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}} + \dfrac{1}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)}}\]
We shift second term in RHS to LHS of the equation
\[ \Rightarrow \dfrac{1}{{\sin \left( {\dfrac{\pi }{n}} \right)}} - \dfrac{1}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}}\]
Take LCM on left hand side of the equation
\[ \Rightarrow \dfrac{{\sin \left( {\dfrac{{3\pi }}{n}} \right) - \sin \left( {\dfrac{\pi }{n}} \right)}}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)\sin \left( {\dfrac{\pi }{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}}\]
Use formula of \[\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\] in numerator
\[ \Rightarrow \dfrac{{2\cos \left( {\dfrac{{\dfrac{{3\pi }}{n} + \dfrac{\pi }{n}}}{2}} \right)\sin \left( {\dfrac{{\dfrac{{3\pi }}{n} - \dfrac{\pi }{n}}}{2}} \right)}}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)\sin \left( {\dfrac{\pi }{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}}\]
\[ \Rightarrow \dfrac{{2\cos \left( {\dfrac{{\dfrac{{4\pi }}{n}}}{2}} \right)\sin \left( {\dfrac{{\dfrac{{2\pi }}{n}}}{2}} \right)}}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)\sin \left( {\dfrac{\pi }{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}}\]
Cancel same factors from numerator and denominator in numerator of LHS
\[ \Rightarrow \dfrac{{2\cos \left( {\dfrac{{2\pi }}{n}} \right)\sin \left( {\dfrac{\pi }{n}} \right)}}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)\sin \left( {\dfrac{\pi }{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}}\]
Cancel same factors from numerator and denominator of LHS
\[ \Rightarrow \dfrac{{2\cos \left( {\dfrac{{2\pi }}{n}} \right)}}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}}\]
Cross multiply the terms from RHS to LHS
\[ \Rightarrow 2\cos \left( {\dfrac{{2\pi }}{n}} \right)\sin \left( {\dfrac{{2\pi }}{n}} \right) = \sin \left( {\dfrac{{3\pi }}{n}} \right)\]
Use formula of \[\sin 2x = 2\sin x\cos x\] in LHS of the equation
\[ \Rightarrow \sin \left( {\dfrac{{4\pi }}{n}} \right) = \sin \left( {\dfrac{{3\pi }}{n}} \right)\] … (1)
We know the general solution for \[\sin \theta = \sin \alpha \]is given by \[\theta = p\pi + {( - 1)^p}\alpha \] where p is an integer value.
Then general solution of equation (1) is
\[\dfrac{{4\pi }}{n} = p\pi + {( - 1)^p}\dfrac{{3\pi }}{n}\]
Since p is an integer it can either be even \[(p = 2n)\] or p can be odd\[(p = 2n + 1)\]
If p is even:
\[ \Rightarrow \dfrac{{4\pi }}{n} = 2k\pi + {( - 1)^{2k}}\dfrac{{3\pi }}{n}\]
\[ \Rightarrow \dfrac{{4\pi }}{n} = 2k\pi + \dfrac{{3\pi }}{n}\]
Shift fraction term to LHS
\[ \Rightarrow \dfrac{{4\pi }}{n} - \dfrac{{3\pi }}{n} = 2k\pi \]
\[ \Rightarrow \dfrac{\pi }{n} = 2k\pi \]
Cancel same factors from both sides of the equation
\[ \Rightarrow \dfrac{1}{n} = 2k\]
Since n was an even number, so, this is a contradiction.
If p is odd:
\[ \Rightarrow \dfrac{{4\pi }}{n} = (2k + 1)\pi + {( - 1)^{2k + 1}}\dfrac{{3\pi }}{n}\]
\[ \Rightarrow \dfrac{{4\pi }}{n} = (2k + 1)\pi - \dfrac{{3\pi }}{n}\]
Shift fraction term to LHS
\[ \Rightarrow \dfrac{{4\pi }}{n} + \dfrac{{3\pi }}{n} = (2k + 1)\pi \]
\[ \Rightarrow \dfrac{{7\pi }}{n} = (2k + 1)\pi \]
Cancel same factors from both sides of the equation
\[ \Rightarrow \dfrac{7}{n} = 2k + 1\]
Of we put \[k = 0\]
\[ \Rightarrow \dfrac{7}{n} = 1\]
\[ \Rightarrow n = 7\] which is greater than 3
\[\therefore \] Positive integer satisfying equation is 7
\[\therefore \]Option A is correct.
Note: Many students try to solve this question by directly substituting the values of ‘n’ given in the options, keep in mind we will have to solve the equation using trigonometric formulas for each of the given values which will take a lot of time. Instead we should solve generally for the solution.
* \[\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\]
Complete step by step answer:
We are given the equation \[\dfrac{1}{{\sin \left( {\dfrac{\pi }{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}} + \dfrac{1}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)}}\]
We shift second term in RHS to LHS of the equation
\[ \Rightarrow \dfrac{1}{{\sin \left( {\dfrac{\pi }{n}} \right)}} - \dfrac{1}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}}\]
Take LCM on left hand side of the equation
\[ \Rightarrow \dfrac{{\sin \left( {\dfrac{{3\pi }}{n}} \right) - \sin \left( {\dfrac{\pi }{n}} \right)}}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)\sin \left( {\dfrac{\pi }{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}}\]
Use formula of \[\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\] in numerator
\[ \Rightarrow \dfrac{{2\cos \left( {\dfrac{{\dfrac{{3\pi }}{n} + \dfrac{\pi }{n}}}{2}} \right)\sin \left( {\dfrac{{\dfrac{{3\pi }}{n} - \dfrac{\pi }{n}}}{2}} \right)}}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)\sin \left( {\dfrac{\pi }{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}}\]
\[ \Rightarrow \dfrac{{2\cos \left( {\dfrac{{\dfrac{{4\pi }}{n}}}{2}} \right)\sin \left( {\dfrac{{\dfrac{{2\pi }}{n}}}{2}} \right)}}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)\sin \left( {\dfrac{\pi }{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}}\]
Cancel same factors from numerator and denominator in numerator of LHS
\[ \Rightarrow \dfrac{{2\cos \left( {\dfrac{{2\pi }}{n}} \right)\sin \left( {\dfrac{\pi }{n}} \right)}}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)\sin \left( {\dfrac{\pi }{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}}\]
Cancel same factors from numerator and denominator of LHS
\[ \Rightarrow \dfrac{{2\cos \left( {\dfrac{{2\pi }}{n}} \right)}}{{\sin \left( {\dfrac{{3\pi }}{n}} \right)}} = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{n}} \right)}}\]
Cross multiply the terms from RHS to LHS
\[ \Rightarrow 2\cos \left( {\dfrac{{2\pi }}{n}} \right)\sin \left( {\dfrac{{2\pi }}{n}} \right) = \sin \left( {\dfrac{{3\pi }}{n}} \right)\]
Use formula of \[\sin 2x = 2\sin x\cos x\] in LHS of the equation
\[ \Rightarrow \sin \left( {\dfrac{{4\pi }}{n}} \right) = \sin \left( {\dfrac{{3\pi }}{n}} \right)\] … (1)
We know the general solution for \[\sin \theta = \sin \alpha \]is given by \[\theta = p\pi + {( - 1)^p}\alpha \] where p is an integer value.
Then general solution of equation (1) is
\[\dfrac{{4\pi }}{n} = p\pi + {( - 1)^p}\dfrac{{3\pi }}{n}\]
Since p is an integer it can either be even \[(p = 2n)\] or p can be odd\[(p = 2n + 1)\]
If p is even:
\[ \Rightarrow \dfrac{{4\pi }}{n} = 2k\pi + {( - 1)^{2k}}\dfrac{{3\pi }}{n}\]
\[ \Rightarrow \dfrac{{4\pi }}{n} = 2k\pi + \dfrac{{3\pi }}{n}\]
Shift fraction term to LHS
\[ \Rightarrow \dfrac{{4\pi }}{n} - \dfrac{{3\pi }}{n} = 2k\pi \]
\[ \Rightarrow \dfrac{\pi }{n} = 2k\pi \]
Cancel same factors from both sides of the equation
\[ \Rightarrow \dfrac{1}{n} = 2k\]
Since n was an even number, so, this is a contradiction.
If p is odd:
\[ \Rightarrow \dfrac{{4\pi }}{n} = (2k + 1)\pi + {( - 1)^{2k + 1}}\dfrac{{3\pi }}{n}\]
\[ \Rightarrow \dfrac{{4\pi }}{n} = (2k + 1)\pi - \dfrac{{3\pi }}{n}\]
Shift fraction term to LHS
\[ \Rightarrow \dfrac{{4\pi }}{n} + \dfrac{{3\pi }}{n} = (2k + 1)\pi \]
\[ \Rightarrow \dfrac{{7\pi }}{n} = (2k + 1)\pi \]
Cancel same factors from both sides of the equation
\[ \Rightarrow \dfrac{7}{n} = 2k + 1\]
Of we put \[k = 0\]
\[ \Rightarrow \dfrac{7}{n} = 1\]
\[ \Rightarrow n = 7\] which is greater than 3
\[\therefore \] Positive integer satisfying equation is 7
\[\therefore \]Option A is correct.
Note: Many students try to solve this question by directly substituting the values of ‘n’ given in the options, keep in mind we will have to solve the equation using trigonometric formulas for each of the given values which will take a lot of time. Instead we should solve generally for the solution.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

