
The polar form of complex number z=$\dfrac{{i - 1}}{{\cos \dfrac{\pi }{3} + \sin \dfrac{\pi }{3}}}$ is.
A.$\dfrac{1}{{\sqrt 2 }}\left( {\cos \dfrac{{3\pi }}{{12}} + i\sin \dfrac{{3\pi }}{{12}}} \right)$
B.$\sqrt 2 \left( {\cos \dfrac{{5\pi }}{{12}} + i\sin \dfrac{{5\pi }}{{12}}} \right)$
C.$\sqrt 2 \left( {\cos \dfrac{{7\pi }}{{12}} + i\sin \dfrac{{7\pi }}{{12}}} \right)$
D.$\dfrac{1}{{\sqrt 2 }}\left( {\cos \dfrac{{5\pi }}{{12}} + i\sin \dfrac{{5\pi }}{{12}}} \right)$
Answer
596.7k+ views
Hint: Now in this question we have to find the polar form of a complex number now before all that we should know that what is a complex number it is a number in the form a+bi, where a and b are real numbers , and i is a solution of the equation ${x^2} = - 1$.Because no real number satisfies this equation, i is called an imaginary number. Now one should also know what is a polar form of a complex number. The polar form of a complex number is another way to represent a complex number. The form z=a+bi is called the rectangular coordinate form of a complex number. The horizontal axis and vertical axis is the imaginary axis.
Complete step-by-step answer:
Let z=$\dfrac{{i - 1}}{{\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}}}$
=$\dfrac{{i - 1}}{{\cos \left( {\dfrac{{180}}{3}} \right) + i\sin \left( {\dfrac{{180}}{3}} \right)}}$
=$\dfrac{{i - 1}}{{\cos {{60}^ \circ } + i\sin {{60}^ \circ }}}$
=$\dfrac{{i - 1}}{{\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}i}}$
=$\dfrac{{i - 1}}{{\dfrac{{1 + \sqrt 3 i}}{2}}}$
=$\dfrac{{2\left( {i - 1} \right)}}{{1 + \sqrt 3 i}}$
Rationalizing:
=$\dfrac{{2\left( {i - 1} \right)}}{{1 + \sqrt 3 i}} \times \dfrac{{1 - \sqrt 3 i}}{{1 - \sqrt 3 i}}$
Now using the rationalising we are able to find that:
$
= \dfrac{{2\left( {1 - i} \right)\left( {1 - \sqrt 3 i} \right)}}{{\left( {1 + \sqrt 3 i} \right)\left( {1 - \sqrt 3 i} \right)}} \\
= \dfrac{{2\left[ {i\left( {1 - \sqrt 3 i} \right) - 1\left( {1 - \sqrt 3 i} \right)} \right]}}{{\left( {1 - \sqrt 3 i} \right)\left( {1 - \sqrt 3 i} \right)}} \\
= \dfrac{{2\left[ {i - \sqrt 3 {i^2} - 1 + \sqrt 3 i} \right]}}{{\left( {1 - \sqrt 3 i} \right)\left( {1 - \sqrt 3 i} \right)}} \\
$
Using $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
$
= \dfrac{{2\left[ { - 1 + i + \sqrt 3 i - \sqrt 3 {i^2}} \right]}}{{{1^2} - {{\left( {\sqrt 3 i} \right)}^2}}} \\
= \dfrac{{2\left[ { - 1 + i + \sqrt 3 i - \sqrt 3 i\left( {{i^2}} \right)} \right]}}{{1 - 3{i^2}}} \\
\\
$
Now, we know that:
$
\Rightarrow {i^2} = - 1 \\
= \dfrac{{2\left[ { - 1 + i + \sqrt 3 i - \sqrt 3 i\left( { - 1} \right)} \right]}}{{1 - 3\left( { - 1} \right)}} \\
= \dfrac{{2\left[ { - 1 + i + \sqrt 3 i + \sqrt 3 } \right]}}{{1 + 3}} \\
$
$
= \dfrac{{2\left[ {\left( { - 1 + \sqrt 3 } \right) + \left( {i + \sqrt 3 i} \right)} \right]}}{4} \\
= \dfrac{{\left( { - 1 + \sqrt 3 } \right) + i\left( {1 + \sqrt 3 } \right)}}{2} \\
= \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2} \\
\\
$
Now, z=$\dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2}$ ………(1)
Let polar form be
z=r$\left( {\cos \theta + i\sin \theta } \right)$ ………..(2)
From (1) and (2)
$
\dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2} = r\left( {\cos \theta + \sin \theta } \right) = r\cos \theta + ir\sin \theta \\
{\text{ }} \downarrow {\text{ }} \downarrow {\text{ }} \downarrow {\text{ }} \downarrow {\text{ }} \\
$
(real part) (imaginary part) (real part) (imaginary part)
Comparing real part
$\dfrac{{\sqrt 3 - 1}}{2} = r\cos \theta $
Comparing Imaginary parts
$\dfrac{{\sqrt 3 + 1}}{2} = r\sin \theta $
Squaring both sides
$
{\left( {\dfrac{{\sqrt 3 - 1}}{2}} \right)^2} = {\left( {r\cos \theta } \right)^2} \\
\dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{{2^2}}} = {r^2}{\cos ^2}\theta \\
$
Using ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$
$
\dfrac{{{{\left( {\sqrt 3 } \right)}^2} + {{\left( 1 \right)}^2} - 2\sqrt 3 \times 1}}{4} = {r^2}{\cos ^2}\theta \\
\dfrac{{3 + 1 - 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta \\
\dfrac{{4 + 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta {\text{ }}.......{\text{(3)}} \\
$
Squaring both sides
$
{\left( {\dfrac{{\sqrt 3 + 1}}{2}} \right)^2} = {\left( {r\sin \theta } \right)^2} \\
\dfrac{{{{\left( {\sqrt 3 + 1} \right)}^2}}}{{{2^2}}} = {r^2}{\sin ^2}\theta \\
$
Using ${\left( {a - b} \right)^2} = {a^2} - {b^2} - 2ab$
$
\dfrac{{{{\left( {\sqrt 3 } \right)}^2} + {{\left( 1 \right)}^2} + 2\sqrt 3 \times 1}}{4} = {r^2}{\sin ^2}\theta \\
\dfrac{{3 + 1 + 2\sqrt 3 }}{4} = {r^2}{\sin ^2}\theta \\
\dfrac{{4 + 2\sqrt 3 }}{4} = {r^2}{\sin ^2}\theta {\text{ }}.......{\text{(4)}} \\
$
Adding (3) and (4)
$
\dfrac{{4 - 2\sqrt 3 }}{4} + \dfrac{{4 + 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta + {r^2}{\sin ^2}\theta \\
\dfrac{1}{4}\left( {4 - 2\sqrt 3 + 4 + 2\sqrt 3 } \right) = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\
$
$
\dfrac{1}{4}\left( {4 + 4 - 2\sqrt 3 + 2\sqrt 3 } \right) = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\
\dfrac{1}{4}\left( {8 - 0} \right) + = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\
$
$
\dfrac{8}{4} = {r^2} \times 1{\text{ }}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta = 1} \right) \\
2 = {r^2} \\
\sqrt 2 = r \\
r = \sqrt 2 \\
$
$
\dfrac{{\sqrt 3 - 1}}{2} + \dfrac{{\sqrt 3 + 1}}{2} = r\cos \theta + ir\sin \theta \\
{\text{ }} \downarrow {\text{ }} \downarrow {\text{ }} \downarrow {\text{ }} \downarrow \\
$
(Real part) (Imaginary (Real (Imaginary
part) part) part)
Comparing real part Comparing imaginary part
$\dfrac{{\sqrt 3 - 1}}{2} = {\text{ r cos }}\theta $ $\dfrac{{\sqrt 3 + 1}}{2} = {\text{ r sin }}\theta $
Put r = $\sqrt 2 $ Put r =$\sqrt 2 $
$
\dfrac{{\sqrt 3 - 1}}{2} = \sqrt 2 \cos \theta \\
\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} = \cos \theta \\
$
$
\dfrac{{\sqrt 3 + 1}}{2} = \sqrt 2 \sin \theta \\
\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} = \sin \theta \\
$
Hence,$\cos \theta = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\& \sin \theta = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$
Rough
$
\sin {75^ \circ } = \sin \left( {{{45}^ \circ } + {{30}^ \circ }} \right) \\
\\
$
Using $\sin \left( {x + y} \right) = \cos y\sin x + \cos x\sin y$
$
= \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{{\sqrt 3 }}{2}} \right) + \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{1}{2}} \right) \\
= \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }} \\
$
$\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$
So,$\sin {75^ \circ } = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$
Since $\sin \theta $ and $\cos \theta $ both positive
Hence $\theta $ lies in the 1st Quadrant
Hence, argument= ${75^ \circ }$
$ = {75^ \circ } \times \dfrac{\pi }{{180}}$
$ = \dfrac{{5\pi }}{{12}}$
Hence, $r = \sqrt 2 ,\& {\text{ }}\theta = \dfrac{{5\pi }}{{12}}$
Thus, Polar form of z:
$
= r\left( {\cos \theta + i\sin \theta } \right) \\
= \sqrt 2 \left( {\cos \dfrac{{5\pi }}{{12}} + i\sin \theta \dfrac{{5\pi }}{{12}}} \right) \\
$
Hence, option B is the correct option
Note:In this question it should be noted that we use various concepts of complex numbers and the polar form of complex numbers. Briefly it means complex number is a number that can be expressed in the form of a+bi, where a and b are real numbers and I is the solution of equation ${x^2} = - 1$ . The polar form of a complex number whereas is another way of representing a complex number. In this question we deal with various trigonometry too like finding the value of $\sin {75^ \circ }$ and basic concepts of representing the complex number in polar form.
Complete step-by-step answer:
Let z=$\dfrac{{i - 1}}{{\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}}}$
=$\dfrac{{i - 1}}{{\cos \left( {\dfrac{{180}}{3}} \right) + i\sin \left( {\dfrac{{180}}{3}} \right)}}$
=$\dfrac{{i - 1}}{{\cos {{60}^ \circ } + i\sin {{60}^ \circ }}}$
=$\dfrac{{i - 1}}{{\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}i}}$
=$\dfrac{{i - 1}}{{\dfrac{{1 + \sqrt 3 i}}{2}}}$
=$\dfrac{{2\left( {i - 1} \right)}}{{1 + \sqrt 3 i}}$
Rationalizing:
=$\dfrac{{2\left( {i - 1} \right)}}{{1 + \sqrt 3 i}} \times \dfrac{{1 - \sqrt 3 i}}{{1 - \sqrt 3 i}}$
Now using the rationalising we are able to find that:
$
= \dfrac{{2\left( {1 - i} \right)\left( {1 - \sqrt 3 i} \right)}}{{\left( {1 + \sqrt 3 i} \right)\left( {1 - \sqrt 3 i} \right)}} \\
= \dfrac{{2\left[ {i\left( {1 - \sqrt 3 i} \right) - 1\left( {1 - \sqrt 3 i} \right)} \right]}}{{\left( {1 - \sqrt 3 i} \right)\left( {1 - \sqrt 3 i} \right)}} \\
= \dfrac{{2\left[ {i - \sqrt 3 {i^2} - 1 + \sqrt 3 i} \right]}}{{\left( {1 - \sqrt 3 i} \right)\left( {1 - \sqrt 3 i} \right)}} \\
$
Using $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
$
= \dfrac{{2\left[ { - 1 + i + \sqrt 3 i - \sqrt 3 {i^2}} \right]}}{{{1^2} - {{\left( {\sqrt 3 i} \right)}^2}}} \\
= \dfrac{{2\left[ { - 1 + i + \sqrt 3 i - \sqrt 3 i\left( {{i^2}} \right)} \right]}}{{1 - 3{i^2}}} \\
\\
$
Now, we know that:
$
\Rightarrow {i^2} = - 1 \\
= \dfrac{{2\left[ { - 1 + i + \sqrt 3 i - \sqrt 3 i\left( { - 1} \right)} \right]}}{{1 - 3\left( { - 1} \right)}} \\
= \dfrac{{2\left[ { - 1 + i + \sqrt 3 i + \sqrt 3 } \right]}}{{1 + 3}} \\
$
$
= \dfrac{{2\left[ {\left( { - 1 + \sqrt 3 } \right) + \left( {i + \sqrt 3 i} \right)} \right]}}{4} \\
= \dfrac{{\left( { - 1 + \sqrt 3 } \right) + i\left( {1 + \sqrt 3 } \right)}}{2} \\
= \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2} \\
\\
$
Now, z=$\dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2}$ ………(1)
Let polar form be
z=r$\left( {\cos \theta + i\sin \theta } \right)$ ………..(2)
From (1) and (2)
$
\dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2} = r\left( {\cos \theta + \sin \theta } \right) = r\cos \theta + ir\sin \theta \\
{\text{ }} \downarrow {\text{ }} \downarrow {\text{ }} \downarrow {\text{ }} \downarrow {\text{ }} \\
$
(real part) (imaginary part) (real part) (imaginary part)
Comparing real part
$\dfrac{{\sqrt 3 - 1}}{2} = r\cos \theta $
Comparing Imaginary parts
$\dfrac{{\sqrt 3 + 1}}{2} = r\sin \theta $
Squaring both sides
$
{\left( {\dfrac{{\sqrt 3 - 1}}{2}} \right)^2} = {\left( {r\cos \theta } \right)^2} \\
\dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{{2^2}}} = {r^2}{\cos ^2}\theta \\
$
Using ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$
$
\dfrac{{{{\left( {\sqrt 3 } \right)}^2} + {{\left( 1 \right)}^2} - 2\sqrt 3 \times 1}}{4} = {r^2}{\cos ^2}\theta \\
\dfrac{{3 + 1 - 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta \\
\dfrac{{4 + 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta {\text{ }}.......{\text{(3)}} \\
$
Squaring both sides
$
{\left( {\dfrac{{\sqrt 3 + 1}}{2}} \right)^2} = {\left( {r\sin \theta } \right)^2} \\
\dfrac{{{{\left( {\sqrt 3 + 1} \right)}^2}}}{{{2^2}}} = {r^2}{\sin ^2}\theta \\
$
Using ${\left( {a - b} \right)^2} = {a^2} - {b^2} - 2ab$
$
\dfrac{{{{\left( {\sqrt 3 } \right)}^2} + {{\left( 1 \right)}^2} + 2\sqrt 3 \times 1}}{4} = {r^2}{\sin ^2}\theta \\
\dfrac{{3 + 1 + 2\sqrt 3 }}{4} = {r^2}{\sin ^2}\theta \\
\dfrac{{4 + 2\sqrt 3 }}{4} = {r^2}{\sin ^2}\theta {\text{ }}.......{\text{(4)}} \\
$
Adding (3) and (4)
$
\dfrac{{4 - 2\sqrt 3 }}{4} + \dfrac{{4 + 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta + {r^2}{\sin ^2}\theta \\
\dfrac{1}{4}\left( {4 - 2\sqrt 3 + 4 + 2\sqrt 3 } \right) = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\
$
$
\dfrac{1}{4}\left( {4 + 4 - 2\sqrt 3 + 2\sqrt 3 } \right) = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\
\dfrac{1}{4}\left( {8 - 0} \right) + = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\
$
$
\dfrac{8}{4} = {r^2} \times 1{\text{ }}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta = 1} \right) \\
2 = {r^2} \\
\sqrt 2 = r \\
r = \sqrt 2 \\
$
$
\dfrac{{\sqrt 3 - 1}}{2} + \dfrac{{\sqrt 3 + 1}}{2} = r\cos \theta + ir\sin \theta \\
{\text{ }} \downarrow {\text{ }} \downarrow {\text{ }} \downarrow {\text{ }} \downarrow \\
$
(Real part) (Imaginary (Real (Imaginary
part) part) part)
Comparing real part Comparing imaginary part
$\dfrac{{\sqrt 3 - 1}}{2} = {\text{ r cos }}\theta $ $\dfrac{{\sqrt 3 + 1}}{2} = {\text{ r sin }}\theta $
Put r = $\sqrt 2 $ Put r =$\sqrt 2 $
$
\dfrac{{\sqrt 3 - 1}}{2} = \sqrt 2 \cos \theta \\
\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} = \cos \theta \\
$
$
\dfrac{{\sqrt 3 + 1}}{2} = \sqrt 2 \sin \theta \\
\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} = \sin \theta \\
$
Hence,$\cos \theta = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\& \sin \theta = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$
Rough
$
\sin {75^ \circ } = \sin \left( {{{45}^ \circ } + {{30}^ \circ }} \right) \\
\\
$
Using $\sin \left( {x + y} \right) = \cos y\sin x + \cos x\sin y$
$
= \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{{\sqrt 3 }}{2}} \right) + \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{1}{2}} \right) \\
= \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }} \\
$
$\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$
So,$\sin {75^ \circ } = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$
Since $\sin \theta $ and $\cos \theta $ both positive
Hence $\theta $ lies in the 1st Quadrant
Hence, argument= ${75^ \circ }$
$ = {75^ \circ } \times \dfrac{\pi }{{180}}$
$ = \dfrac{{5\pi }}{{12}}$
Hence, $r = \sqrt 2 ,\& {\text{ }}\theta = \dfrac{{5\pi }}{{12}}$
Thus, Polar form of z:
$
= r\left( {\cos \theta + i\sin \theta } \right) \\
= \sqrt 2 \left( {\cos \dfrac{{5\pi }}{{12}} + i\sin \theta \dfrac{{5\pi }}{{12}}} \right) \\
$
Hence, option B is the correct option
Note:In this question it should be noted that we use various concepts of complex numbers and the polar form of complex numbers. Briefly it means complex number is a number that can be expressed in the form of a+bi, where a and b are real numbers and I is the solution of equation ${x^2} = - 1$ . The polar form of a complex number whereas is another way of representing a complex number. In this question we deal with various trigonometry too like finding the value of $\sin {75^ \circ }$ and basic concepts of representing the complex number in polar form.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

