
The polar coordinates of the vertices of a triangle are $\left( 0,0 \right),\left( 3,\dfrac{\pi }{2} \right)\ and\ \left( 3,\dfrac{\pi }{6} \right)$. Then the triangle is,
A. Right angled
B. Isosceles
C. Equilateral
D. None of these
Answer
589.8k+ views
Hint: In the above question we will first find the all side of triangle by using the distance formula between $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)$ as follows:
$D=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
Also, we will use the formula to change the polar coordinates into Cartesian coordinates as follows:
Let, we have polar coordinates $\left( r,\theta \right)$ then in Cartesian coordinates,
X coordinates $=r\cos \theta $
Y coordinates $=r\sin \theta $
Complete step-by-step answer:
We have been given the polar coordinates of the vertices of a triangle are $\left( 0,0 \right),\left( 3,\dfrac{\pi }{2} \right)\ and\ \left( 3,\dfrac{\pi }{6} \right)$.
Let us suppose a $\Delta ABC$ where $A\left( 0,0 \right),B\left( 3,\dfrac{\pi }{2} \right)\ and\ C\left( 3,\dfrac{\pi }{6} \right)$.
We know that in Cartesian form the polar coordinates $\left( r,\theta \right)$ is written as;
X coordinates $=r\cos \theta $
Y coordinates $=r\sin \theta $
$B\left( 3,\dfrac{\pi }{2} \right)$
X coordinates $=3\cos \dfrac{\pi }{2}=3\times 0=0$
Y coordinates $=3\sin \dfrac{\pi }{2}=3\times 1=3$
$C\left( 3,\dfrac{\pi }{6} \right)$
X coordinates $=3\cos \dfrac{\pi }{6}=3\times \dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}$
Y coordinates $=3\sin \dfrac{\pi }{6}=3\times \dfrac{1}{2}=\dfrac{3}{2}$
We know that distance between two points $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)$ is given by,
$D=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
We have $A\left( 0,0 \right)\ and\ B\left( 0,3 \right)$
$\begin{align}
& \Rightarrow AB=\sqrt{{{\left( 0-0 \right)}^{2}}+{{\left( 3-0 \right)}^{2}}} \\
& =\sqrt{0+9} \\
& =3 \\
\end{align}$
Also, we have $A\left( 0,0 \right)\ and\ C\left( \dfrac{3\sqrt{3}}{2},\dfrac{3}{2} \right)$
$\begin{align}
& \Rightarrow AC=\sqrt{{{\left( \dfrac{3\sqrt{3}}{2}-0 \right)}^{2}}+{{\left( \dfrac{3}{2}-0 \right)}^{2}}} \\
& =\sqrt{\dfrac{27}{4}+\dfrac{9}{4}} \\
& =\sqrt{\dfrac{36}{4}} \\
& =\dfrac{6}{2} \\
& =3 \\
\end{align}$
Again, we have $B\left( 0,3 \right)\ and\ C\left( \dfrac{3\sqrt{3}}{2},\dfrac{3}{2} \right)$
$\begin{align}
& \Rightarrow BC=\sqrt{{{\left( \dfrac{3\sqrt{3}}{2}-0 \right)}^{2}}+{{\left( \dfrac{3}{2}-0 \right)}^{2}}} \\
& =\sqrt{\dfrac{27}{4}+{{\left( \dfrac{-3}{2} \right)}^{2}}} \\
& =\sqrt{\dfrac{27}{4}+\dfrac{9}{4}} \\
& =\sqrt{\dfrac{36}{4}} \\
& =\dfrac{6}{2} \\
& =3 \\
\end{align}$
So, we get $AB=BC=AC=3unit$.
We know that if a triangle has all its sides equal then it must be an equilateral triangle.
Hence, ABC is an equilateral triangle.
Therefore, the correct option of the given question is option C.
Note: We can also find the type of triangle by finding the angles between the lines of the triangle and in that case we get each angle equal to $60{}^\circ $. Hence, it is an equilateral triangle. Also, remember that we have been given the coordinates in polar form. So, we must have to change it into Cartesian form otherwise we will make mistakes and treat it like Cartesian coordinates.
$D=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
Also, we will use the formula to change the polar coordinates into Cartesian coordinates as follows:
Let, we have polar coordinates $\left( r,\theta \right)$ then in Cartesian coordinates,
X coordinates $=r\cos \theta $
Y coordinates $=r\sin \theta $
Complete step-by-step answer:
We have been given the polar coordinates of the vertices of a triangle are $\left( 0,0 \right),\left( 3,\dfrac{\pi }{2} \right)\ and\ \left( 3,\dfrac{\pi }{6} \right)$.
Let us suppose a $\Delta ABC$ where $A\left( 0,0 \right),B\left( 3,\dfrac{\pi }{2} \right)\ and\ C\left( 3,\dfrac{\pi }{6} \right)$.
We know that in Cartesian form the polar coordinates $\left( r,\theta \right)$ is written as;
X coordinates $=r\cos \theta $
Y coordinates $=r\sin \theta $
$B\left( 3,\dfrac{\pi }{2} \right)$
X coordinates $=3\cos \dfrac{\pi }{2}=3\times 0=0$
Y coordinates $=3\sin \dfrac{\pi }{2}=3\times 1=3$
$C\left( 3,\dfrac{\pi }{6} \right)$
X coordinates $=3\cos \dfrac{\pi }{6}=3\times \dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}$
Y coordinates $=3\sin \dfrac{\pi }{6}=3\times \dfrac{1}{2}=\dfrac{3}{2}$
We know that distance between two points $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)$ is given by,
$D=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
We have $A\left( 0,0 \right)\ and\ B\left( 0,3 \right)$
$\begin{align}
& \Rightarrow AB=\sqrt{{{\left( 0-0 \right)}^{2}}+{{\left( 3-0 \right)}^{2}}} \\
& =\sqrt{0+9} \\
& =3 \\
\end{align}$
Also, we have $A\left( 0,0 \right)\ and\ C\left( \dfrac{3\sqrt{3}}{2},\dfrac{3}{2} \right)$
$\begin{align}
& \Rightarrow AC=\sqrt{{{\left( \dfrac{3\sqrt{3}}{2}-0 \right)}^{2}}+{{\left( \dfrac{3}{2}-0 \right)}^{2}}} \\
& =\sqrt{\dfrac{27}{4}+\dfrac{9}{4}} \\
& =\sqrt{\dfrac{36}{4}} \\
& =\dfrac{6}{2} \\
& =3 \\
\end{align}$
Again, we have $B\left( 0,3 \right)\ and\ C\left( \dfrac{3\sqrt{3}}{2},\dfrac{3}{2} \right)$
$\begin{align}
& \Rightarrow BC=\sqrt{{{\left( \dfrac{3\sqrt{3}}{2}-0 \right)}^{2}}+{{\left( \dfrac{3}{2}-0 \right)}^{2}}} \\
& =\sqrt{\dfrac{27}{4}+{{\left( \dfrac{-3}{2} \right)}^{2}}} \\
& =\sqrt{\dfrac{27}{4}+\dfrac{9}{4}} \\
& =\sqrt{\dfrac{36}{4}} \\
& =\dfrac{6}{2} \\
& =3 \\
\end{align}$
So, we get $AB=BC=AC=3unit$.
We know that if a triangle has all its sides equal then it must be an equilateral triangle.
Hence, ABC is an equilateral triangle.
Therefore, the correct option of the given question is option C.
Note: We can also find the type of triangle by finding the angles between the lines of the triangle and in that case we get each angle equal to $60{}^\circ $. Hence, it is an equilateral triangle. Also, remember that we have been given the coordinates in polar form. So, we must have to change it into Cartesian form otherwise we will make mistakes and treat it like Cartesian coordinates.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

