
The orthocentre of the triangle formed by the points (2, 1, 5), (3, 2, 3), (4, 0, 4) is______A.(2, 1, 5)B.(3, 2, 3)C.(4, 0, 4)D.(3, 0, 5)
Answer
505.8k+ views
Hint: Orthocentre is the point of intersection of altitudes of triangles. If we see in the below figure H is the orthocentre. We know that the equation of a line with \[A({x_1},{y_1},{z_1})\] and \[B({x_2},{y_2},{z_2})\] is \[\dfrac{{x - {x_1}}}{{{x_2} - {x_1}}} = \dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{z - {z_1}}}{{{z_2} - {z_1}}}\] . We find the equation of each line in a triangle. We also know if two lies are perpendicular then the product of their direction cosines are zero.
Complete step-by-step answer:
Note: This problem has many calculations so be careful while substituting the values. Know the equation of line passing through the two points. Also know how to find the point of intersection of two lines in three dimensions. Find the equation of line which is required as we did above.
Complete step-by-step answer:
Let, \[A(2,1,5)\] \[B(3,2,3)\] and \[C(4,0,4)\] .
Now, expressing a given problem in a diagram.
Equation of a line with \[A({x_1},{y_1},{z_1})\] and \[B({x_2},{y_2},{z_2})\] is \[\dfrac{{x - {x_1}}}{{{x_2} - {x_1}}} = \dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{z - {z_1}}}{{{z_2} - {z_1}}}\]
Now, equation of line AC is given by:
\[A(2,1,5)\] and \[C(4,0,4)\] substituting we get,
\[ \Rightarrow \dfrac{{x - 2}}{{4 - 2}} = \dfrac{{y - 1}}{{0 - 1}} = \dfrac{{z - 5}}{{4 - 5}}\]
\[ \Rightarrow \dfrac{{x - 2}}{2} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{{z - 5}}{{ - 1}}\]
Hence the direction ratios of AC is \[(2, - 1, - 1)\] .
Equation of line BC is given by:
\[B(3,2,3)\] and \[C(4,0,4)\] substituting we get:
\[ \Rightarrow \dfrac{{x - 3}}{{4 - 3}} = \dfrac{{y - 2}}{{0 - 2}} = \dfrac{{z - 3}}{{4 - 3}}\]
\[ \Rightarrow \dfrac{{x - 3}}{1} = \dfrac{{y - 2}}{{ - 2}} = \dfrac{{z - 3}}{1}\]
Hence, the direction ratios of BC is \[(1, - 2,1)\] .
We need the equation of AP.
To find P that is the foot of perpendicular BC.
We know the direction ratios of BC is \[(1, - 2,1)\] .
\[ \Rightarrow \dfrac{{x - 3}}{1} = \dfrac{{y - 2}}{{ - 2}} = \dfrac{{z - 3}}{1} = \lambda \]
\[ \Rightarrow x - 3 = \lambda ,{\text{ }}y - 2 = - 2\lambda ,{\text{ }}z - 3 = \lambda \]
\[ \Rightarrow x = \lambda + 3,{\text{ }}y = - 2\lambda + 2,{\text{ }}z = \lambda + 3\]
Then the zonal coordinates \[(\lambda + 3, - 2\lambda + 2,\lambda + 3)\]
Now this P is perpendicular to the point A. then the direction ratios are proportional to,
\[(\lambda + 3 - 2, - 2\lambda + 2 - 1,\lambda + 3 - 5)\]
\[ \Rightarrow (\lambda + 1, - 2\lambda + 1,\lambda - 2)\] . - (1)
Now direction ratios of A and P are perpendicular so the sum of the product becomes zero.
\[ \Rightarrow 1(\lambda + 1) + ( - 2)( - 2\lambda + 1) + 1(\lambda - 2) = 0\]
\[ \Rightarrow \lambda + 1 - 4\lambda - 2 + \lambda - 2 = 0\]
\[ \Rightarrow 6\lambda - 3 = 0\]
\[ \Rightarrow \lambda = \dfrac{3}{6}\]
\[ \Rightarrow \lambda = \dfrac{1}{2}\]
Substituting in equation (1)
\[ \Rightarrow P = \left( {\dfrac{1}{2} + 3,{\text{ }} - 2\left( {\dfrac{1}{2}} \right) + 2,{\text{ }}\dfrac{1}{2} + 3} \right)\]
\[ \Rightarrow P = \left( {\dfrac{7}{2},1,\dfrac{7}{2}} \right)\]
Now the equation of line AP with \[A(2,1,5)\] and \[P = \left( {\dfrac{7}{2},1,\dfrac{7}{2}} \right)\] is :
\[ \Rightarrow \dfrac{{x - 2}}{{2 - \dfrac{7}{2}}} = \dfrac{{y - 1}}{{1 - 1}} = \dfrac{{z - 5}}{{5 - \dfrac{7}{2}}}\]
\[ \Rightarrow \dfrac{{x - 2}}{{\dfrac{{ - 3}}{2}}} = \dfrac{{y - 1}}{0} = \dfrac{{z - 5}}{{\dfrac{3}{2}}}\] (Multiply the numerator by 2)
\[ \Rightarrow \dfrac{{x - 2}}{{ - 3}} = \dfrac{{y - 1}}{0} = \dfrac{{z - 5}}{3}\] (divide numerator by 3)
\[ \Rightarrow \dfrac{{x - 2}}{{ - 1}} = \dfrac{{y - 1}}{0} = \dfrac{{z - 5}}{1}\]
Now similarly we need the equation of line BQ.
To find Q, the foot of line perpendicular to AC.
Follow the same procedure as we did in above,
\[ \Rightarrow \dfrac{{x - 2}}{2} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{{z - 5}}{1} = \lambda \]
\[ \Rightarrow x = 2\lambda + 2,{\text{ }}y = - \lambda + 1,{\text{ }}z = - \lambda + 5\]
\[ \Rightarrow (2\lambda + 2, - \lambda + 1, - \lambda + 5)\] - (2)
Now direction ratios are proportional to
\[ \Rightarrow (2\lambda + 2 - 3, - \lambda + 1 - 2, - \lambda + 5 - 3)\]
\[ \Rightarrow (2\lambda - 1, - \lambda - 1, - \lambda + 2)\]
\[ \Rightarrow 2(2\lambda - 1) + ( - 1)( - \lambda - 1) + ( - 1)( - \lambda + 2) = 0\]
\[ \Rightarrow 4\lambda - 2 + \lambda + 1 + \lambda - 2 = 0\]
\[ \Rightarrow 6\lambda - 3 = 0\]
\[ \Rightarrow 6\lambda = 3\]
\[ \Rightarrow \lambda = \dfrac{3}{6}\]
\[ \Rightarrow \lambda = \dfrac{1}{2}\]
Now substituting in equation (2)
\[\left( {2\left( {\dfrac{1}{2}} \right) + 2,{\text{ }} - \dfrac{1}{2} + 1,{\text{ }} - \dfrac{1}{2} + 5} \right)\]
\[Q = \left( {3,\dfrac{1}{2},\dfrac{9}{2}} \right)\]
Now equation of BQ is
\[ \Rightarrow \dfrac{{x - 3}}{{3 - 3}} = \dfrac{{y - 2}}{{2 - \dfrac{1}{2}}} = \dfrac{{z - 3}}{{3 - \dfrac{9}{2}}}\]
\[ \Rightarrow \dfrac{{x - 3}}{0} = \dfrac{{y - 2}}{{\dfrac{3}{2}}} = \dfrac{{z - 3}}{{\dfrac{{ - 3}}{2}}}\]
\[ \Rightarrow \dfrac{{x - 3}}{0} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{{ - 3}}\]
Thus we need to find the point of intersection of two lines AP and BQ:
\[\dfrac{{x - 2}}{{ - 1}} = \dfrac{{y - 1}}{0} = \dfrac{{z - 5}}{{ - 1}}\] and \[\dfrac{{x - 3}}{0} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{{ - 3}}\]
Let \[\dfrac{{x - 3}}{0} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{{ - 3}} = \lambda \]
That is \[H = (3,3\lambda + 2, - 3\lambda + 3)\]
To find \[\lambda \] value,
\[\dfrac{{x - 2}}{{ - 1}} = \dfrac{{y - 1}}{0} = \dfrac{{z - 5}}{{ - 1}} = \lambda \]
\[x = - \lambda + 2,y = 1,z = - \lambda + 5\]
\[\dfrac{{ - \lambda + 2 - 3}}{0} = \dfrac{{1 - 2}}{3} = \dfrac{{ - \lambda + 5 - 3}}{{ - 3}}\]
\[\dfrac{{ - \lambda - 1}}{0} = \dfrac{{ - 1}}{3} = \dfrac{{ - \lambda + 2}}{{ - 3}}\]
\[\dfrac{{ - \lambda - 1}}{0} = \dfrac{{ - 1}}{3}\]
\[3( - \lambda - 1) = - 1\]
\[3(\lambda + 1) = 1\]
\[3\lambda + 3 = 1\]
\[3\lambda = - 2\]
\[\lambda = \dfrac{{ - 2}}{3}\]
Substituting in H.
\[H = (3,3 \times \dfrac{{ - 2}}{3} + 2, - 3 \times \dfrac{{ - 2}}{3} + 3)\]
\[H = (3,0,5)\]
So, the correct answer is “Option D”.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
