Answer
Verified
469.2k+ views
Hint: This problem is based on the principle of fundamental counting which states that if there are n ways of doing something, and m ways of doing another thing after that, then there are $m \times n$ ways to perform both of these actions.
Complete step-by-step answer:
We know that
A three digit number has three places Ones, tenths and hundredths. Each place can be filled with any number between \[0{\text{ to 9}}\] .
For a three digit number without$5$ , hundreds place can be filled with any number except $0{\text{ and 5}}{\text{.}}$
Therefore the number of digits that can be placed at the hundredth’s place is $8$ .
Number 5 cannot be used as mentioned in the question.
So, number of digits that can be placed in tenth’s place is $9.$
And, number of digits that can be placed in one’s place is $9.$
So, from the principle of fundamental counting number of three digit numbers having no digits as $5$ is
$
= 8 \times 9 \times 9 \\
= 648 \\
$
Hence, the number of three digits numbers having no digits as \[5{\text{ is 648}}{\text{.}}\]
Note: This problem is based on fundamental counting principle and for similar problems like this we have to find the number of ways a task can be done. These types of problems exclude the way which is not required and count the others left. In a three digit number zero cannot be placed at the hundredth’s place because the number will no longer be a three digit number.
Complete step-by-step answer:
We know that
A three digit number has three places Ones, tenths and hundredths. Each place can be filled with any number between \[0{\text{ to 9}}\] .
For a three digit number without$5$ , hundreds place can be filled with any number except $0{\text{ and 5}}{\text{.}}$
Therefore the number of digits that can be placed at the hundredth’s place is $8$ .
Number 5 cannot be used as mentioned in the question.
So, number of digits that can be placed in tenth’s place is $9.$
And, number of digits that can be placed in one’s place is $9.$
So, from the principle of fundamental counting number of three digit numbers having no digits as $5$ is
$
= 8 \times 9 \times 9 \\
= 648 \\
$
Hence, the number of three digits numbers having no digits as \[5{\text{ is 648}}{\text{.}}\]
Note: This problem is based on fundamental counting principle and for similar problems like this we have to find the number of ways a task can be done. These types of problems exclude the way which is not required and count the others left. In a three digit number zero cannot be placed at the hundredth’s place because the number will no longer be a three digit number.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
A group of fish is known as class 7 english CBSE
The highest dam in India is A Bhakra dam B Tehri dam class 10 social science CBSE
Write all prime numbers between 80 and 100 class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Who administers the oath of office to the President class 10 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Kolkata port is situated on the banks of river A Ganga class 9 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE