
The number of real solutions of the trigonometric equation $\sin 3\theta =4\sin \theta \sin 2\theta \sin 4\theta $ in $0\le \theta \le \pi $ is.
(a) 2 real solutions
(b) 4 real solutions
(c) 6 real solutions
(d) 8 real solutions
Answer
595.5k+ views
Hint:For solving this question we will use some trigonometric formulae like $2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)$ , $\sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)$ and then find the value of $\theta $ which will satisfy the given equation. After finding the solutions we will just count them and find the correct answer.
Complete step-by-step answer:
Given:
It is given that $\sin 3\theta =4\sin \theta \sin 2\theta \sin 4\theta $ in $0\le \theta \le \pi $ and we have to find the number of real solutions.
Now, before we proceed we should know the following formulas:
$\begin{align}
& 2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)...................\left( 1 \right) \\
& 2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right)...................\left( 2 \right) \\
& \sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)...............\left( 3 \right) \\
& \cos \dfrac{2\pi }{3}=-\dfrac{1}{2}............................................................\left( 4 \right) \\
\end{align}$
We have,
$\sin 3\theta =4\sin \theta \sin 2\theta \sin 4\theta $
Now, using the formula from the equation (1) to write $2\sin 2\theta \sin \theta =\cos \theta -\cos 3\theta $ . Then,
$\begin{align}
& \sin 3\theta =4\sin \theta \sin 2\theta \sin 4\theta \\
& \Rightarrow \sin 3\theta =2\sin 4\theta \left( 2\sin 2\theta \sin \theta \right) \\
& \Rightarrow \sin 3\theta =2\sin 4\theta \left( \cos \left( 2\theta -\theta \right)-\cos \left( 2\theta +\theta \right) \right) \\
& \Rightarrow \sin 3\theta =2\sin 4\theta \left( \cos \theta -\cos 3\theta \right) \\
& \Rightarrow \sin 3\theta =2\sin 4\theta \cos \theta -2\sin 4\theta \cos 3\theta \\
\end{align}$
Now, using the formula from the equation (2) to write $2\sin 4\theta \cos \theta =\sin 5\theta +\sin 3\theta $ and $2\sin 4\theta \cos 3\theta =\sin 7\theta +\sin \theta $ . Then,
$\begin{align}
& \sin 3\theta =2\sin 4\theta \cos \theta -2\sin 4\theta \cos 3\theta \\
& \Rightarrow \sin 3\theta =\sin \left( 4\theta +\theta \right)+\sin \left( 4\theta -\theta \right)-\sin \left( 4\theta +3\theta \right)-\sin \left( 4\theta -3\theta \right) \\
& \Rightarrow \sin 3\theta =\sin 5\theta +\sin 3\theta -\sin 7\theta -\sin \theta \\
& \Rightarrow \sin 7\theta -\sin 5\theta +\sin \theta =0 \\
\end{align}$
Now, using the formula from the equation (3) to write $\sin 7\theta -\sin 5\theta =2\cos 6\theta \sin \theta $ . Then,
$\begin{align}
& \sin 7\theta -\sin 5\theta +\sin \theta =0 \\
& \Rightarrow 2\cos \left( \dfrac{7\theta +5\theta }{2} \right)\sin \left( \dfrac{7\theta -5\theta }{2} \right)+\sin \theta =0 \\
& \Rightarrow 2\cos 6\theta \sin \theta +\sin \theta =0 \\
& \Rightarrow 2\sin \theta \left( \cos 6\theta +\dfrac{1}{2} \right)=0 \\
\end{align}$
Now, write $\dfrac{1}{2}=-\cos \dfrac{2\pi }{3}$ in the above equation. Then,
$\begin{align}
& 2\sin \theta \left( \cos 6\theta +\dfrac{1}{2} \right)=0 \\
& \Rightarrow 2\sin \theta \left( \cos 6\theta -\cos \dfrac{2\pi }{3} \right)=0 \\
& \Rightarrow \sin \theta =0\text{ , }\cos 6\theta =\cos \dfrac{2\pi }{3} \\
\end{align}$
Now, from the above result we have the following two equations:
$\begin{align}
& \sin \theta =0......................\left( 5 \right) \\
& \cos 6\theta =\cos \dfrac{2\pi }{3}..........\left( 6 \right) \\
\end{align}$
Now, we will find suitable values of $\theta $ for each of the above equation separately.
Form equation (5) we know that, $\sin \theta =0$ . And before we proceed, we should know that if $\sin \theta =0$ , then $\theta =n\pi $ where $n$ is any integer. But before we find $\theta $ , we should remember that $\theta $ can take values from $0$ to $\pi $ including $0$ & $\pi $ . Then,
$\begin{align}
& \sin \theta =0 \\
& \Rightarrow \theta =0,\pi ......................\left( 7 \right) \\
\end{align}$
Now, from the above result, suitable values of $\theta $ will be $0,\pi $ .
Now, before we proceed we should know one important result which we will use here.
If $\cos x=\cos y$ , then the general solution for $x$ in terms of y can be written as,
$x=2n\pi \pm y............\left( 8 \right)$ , where $n$ is any integer.
From equation (6) we know that $\cos 6\theta =\cos \dfrac{2\pi }{3}$ . So, we can use the formula from the equation (8). Then,
$\begin{align}
& \cos 6\theta =\cos \dfrac{2\pi }{3} \\
& \Rightarrow 6\theta =2n\pi \pm \dfrac{2\pi }{3} \\
& \Rightarrow \theta =\dfrac{n\pi }{3}\pm \dfrac{\pi }{9} \\
\end{align}$
First, consider, $x=\dfrac{n\pi }{3}+\dfrac{\pi }{9}$
Put, $n=0$ . Then,
$\begin{align}
& x=0+\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{\pi }{9}...........\left( 9 \right) \\
\end{align}$
Put, $n=1$ . Then,
$\begin{align}
& x=\dfrac{\pi }{3}+\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{4\pi }{9}..........\left( 10 \right) \\
\end{align}$
Put, $n=2$ . Then,
$\begin{align}
& x=\dfrac{2\pi }{3}+\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{7\pi }{9}.............\left( 11 \right) \\
\end{align}$
Put, $n=3$ . Then,
$\begin{align}
& x=\dfrac{3\pi }{3}+\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{10\pi }{9}\left( >\pi \right) \\
\end{align}$
Now consider, $x=\dfrac{n\pi }{3}-\dfrac{\pi }{9}$
Put, $n=1$ . Then,
$\begin{align}
& x=\dfrac{\pi }{3}-\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{2\pi }{9}.............\left( 12 \right) \\
\end{align}$
Put, $n=2$ . Then,
$\begin{align}
& x=\dfrac{2\pi }{3}-\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{5\pi }{9}............\left( 13 \right) \\
\end{align}$
Put, $n=3$ . Then,
$\begin{align}
& x=\dfrac{3\pi }{3}-\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{8\pi }{9}............\left( 14 \right) \\
\end{align}$
Put, $n=4$ . Then,
$\begin{align}
& x=\dfrac{4\pi }{3}-\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{11\pi }{9}\left( >\pi \right) \\
\end{align}$
In the above calculations, we neglected the values which are greater than $\pi $ or lesser than 0.
From (7), (9), (10), (11), (12), (13) and (14) we have:
$x=0,\pi \text{ ; }x=\dfrac{\pi }{9}\text{ ; }x=\dfrac{4\pi }{9}\text{ ; }x=\dfrac{7\pi }{9}\text{ ; }x=\dfrac{2\pi }{9}\text{ ; }x=\dfrac{5\pi }{9}\text{ ; }x=\dfrac{8\pi }{9}$
Now, from the above result, it is evident that there will be total 8 suitable values of $\theta $ Hence, (d) will be the correct option.
Note: Here, we should use each formula which is mentioned in the solution. And for finding the value of $\theta $ and we should remember that $\theta $ can take values from $0$ to $\pi $ including $0$ & $\pi $ while solving. Then, find the number of suitable values and match the correct option. Moreover, we should avoid calculation mistakes while solving to get the correct answer.
Complete step-by-step answer:
Given:
It is given that $\sin 3\theta =4\sin \theta \sin 2\theta \sin 4\theta $ in $0\le \theta \le \pi $ and we have to find the number of real solutions.
Now, before we proceed we should know the following formulas:
$\begin{align}
& 2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)...................\left( 1 \right) \\
& 2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right)...................\left( 2 \right) \\
& \sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)...............\left( 3 \right) \\
& \cos \dfrac{2\pi }{3}=-\dfrac{1}{2}............................................................\left( 4 \right) \\
\end{align}$
We have,
$\sin 3\theta =4\sin \theta \sin 2\theta \sin 4\theta $
Now, using the formula from the equation (1) to write $2\sin 2\theta \sin \theta =\cos \theta -\cos 3\theta $ . Then,
$\begin{align}
& \sin 3\theta =4\sin \theta \sin 2\theta \sin 4\theta \\
& \Rightarrow \sin 3\theta =2\sin 4\theta \left( 2\sin 2\theta \sin \theta \right) \\
& \Rightarrow \sin 3\theta =2\sin 4\theta \left( \cos \left( 2\theta -\theta \right)-\cos \left( 2\theta +\theta \right) \right) \\
& \Rightarrow \sin 3\theta =2\sin 4\theta \left( \cos \theta -\cos 3\theta \right) \\
& \Rightarrow \sin 3\theta =2\sin 4\theta \cos \theta -2\sin 4\theta \cos 3\theta \\
\end{align}$
Now, using the formula from the equation (2) to write $2\sin 4\theta \cos \theta =\sin 5\theta +\sin 3\theta $ and $2\sin 4\theta \cos 3\theta =\sin 7\theta +\sin \theta $ . Then,
$\begin{align}
& \sin 3\theta =2\sin 4\theta \cos \theta -2\sin 4\theta \cos 3\theta \\
& \Rightarrow \sin 3\theta =\sin \left( 4\theta +\theta \right)+\sin \left( 4\theta -\theta \right)-\sin \left( 4\theta +3\theta \right)-\sin \left( 4\theta -3\theta \right) \\
& \Rightarrow \sin 3\theta =\sin 5\theta +\sin 3\theta -\sin 7\theta -\sin \theta \\
& \Rightarrow \sin 7\theta -\sin 5\theta +\sin \theta =0 \\
\end{align}$
Now, using the formula from the equation (3) to write $\sin 7\theta -\sin 5\theta =2\cos 6\theta \sin \theta $ . Then,
$\begin{align}
& \sin 7\theta -\sin 5\theta +\sin \theta =0 \\
& \Rightarrow 2\cos \left( \dfrac{7\theta +5\theta }{2} \right)\sin \left( \dfrac{7\theta -5\theta }{2} \right)+\sin \theta =0 \\
& \Rightarrow 2\cos 6\theta \sin \theta +\sin \theta =0 \\
& \Rightarrow 2\sin \theta \left( \cos 6\theta +\dfrac{1}{2} \right)=0 \\
\end{align}$
Now, write $\dfrac{1}{2}=-\cos \dfrac{2\pi }{3}$ in the above equation. Then,
$\begin{align}
& 2\sin \theta \left( \cos 6\theta +\dfrac{1}{2} \right)=0 \\
& \Rightarrow 2\sin \theta \left( \cos 6\theta -\cos \dfrac{2\pi }{3} \right)=0 \\
& \Rightarrow \sin \theta =0\text{ , }\cos 6\theta =\cos \dfrac{2\pi }{3} \\
\end{align}$
Now, from the above result we have the following two equations:
$\begin{align}
& \sin \theta =0......................\left( 5 \right) \\
& \cos 6\theta =\cos \dfrac{2\pi }{3}..........\left( 6 \right) \\
\end{align}$
Now, we will find suitable values of $\theta $ for each of the above equation separately.
Form equation (5) we know that, $\sin \theta =0$ . And before we proceed, we should know that if $\sin \theta =0$ , then $\theta =n\pi $ where $n$ is any integer. But before we find $\theta $ , we should remember that $\theta $ can take values from $0$ to $\pi $ including $0$ & $\pi $ . Then,
$\begin{align}
& \sin \theta =0 \\
& \Rightarrow \theta =0,\pi ......................\left( 7 \right) \\
\end{align}$
Now, from the above result, suitable values of $\theta $ will be $0,\pi $ .
Now, before we proceed we should know one important result which we will use here.
If $\cos x=\cos y$ , then the general solution for $x$ in terms of y can be written as,
$x=2n\pi \pm y............\left( 8 \right)$ , where $n$ is any integer.
From equation (6) we know that $\cos 6\theta =\cos \dfrac{2\pi }{3}$ . So, we can use the formula from the equation (8). Then,
$\begin{align}
& \cos 6\theta =\cos \dfrac{2\pi }{3} \\
& \Rightarrow 6\theta =2n\pi \pm \dfrac{2\pi }{3} \\
& \Rightarrow \theta =\dfrac{n\pi }{3}\pm \dfrac{\pi }{9} \\
\end{align}$
First, consider, $x=\dfrac{n\pi }{3}+\dfrac{\pi }{9}$
Put, $n=0$ . Then,
$\begin{align}
& x=0+\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{\pi }{9}...........\left( 9 \right) \\
\end{align}$
Put, $n=1$ . Then,
$\begin{align}
& x=\dfrac{\pi }{3}+\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{4\pi }{9}..........\left( 10 \right) \\
\end{align}$
Put, $n=2$ . Then,
$\begin{align}
& x=\dfrac{2\pi }{3}+\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{7\pi }{9}.............\left( 11 \right) \\
\end{align}$
Put, $n=3$ . Then,
$\begin{align}
& x=\dfrac{3\pi }{3}+\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{10\pi }{9}\left( >\pi \right) \\
\end{align}$
Now consider, $x=\dfrac{n\pi }{3}-\dfrac{\pi }{9}$
Put, $n=1$ . Then,
$\begin{align}
& x=\dfrac{\pi }{3}-\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{2\pi }{9}.............\left( 12 \right) \\
\end{align}$
Put, $n=2$ . Then,
$\begin{align}
& x=\dfrac{2\pi }{3}-\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{5\pi }{9}............\left( 13 \right) \\
\end{align}$
Put, $n=3$ . Then,
$\begin{align}
& x=\dfrac{3\pi }{3}-\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{8\pi }{9}............\left( 14 \right) \\
\end{align}$
Put, $n=4$ . Then,
$\begin{align}
& x=\dfrac{4\pi }{3}-\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{11\pi }{9}\left( >\pi \right) \\
\end{align}$
In the above calculations, we neglected the values which are greater than $\pi $ or lesser than 0.
From (7), (9), (10), (11), (12), (13) and (14) we have:
$x=0,\pi \text{ ; }x=\dfrac{\pi }{9}\text{ ; }x=\dfrac{4\pi }{9}\text{ ; }x=\dfrac{7\pi }{9}\text{ ; }x=\dfrac{2\pi }{9}\text{ ; }x=\dfrac{5\pi }{9}\text{ ; }x=\dfrac{8\pi }{9}$
Now, from the above result, it is evident that there will be total 8 suitable values of $\theta $ Hence, (d) will be the correct option.
Note: Here, we should use each formula which is mentioned in the solution. And for finding the value of $\theta $ and we should remember that $\theta $ can take values from $0$ to $\pi $ including $0$ & $\pi $ while solving. Then, find the number of suitable values and match the correct option. Moreover, we should avoid calculation mistakes while solving to get the correct answer.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

