Answer
Verified
464.1k+ views
Hint: The molarity of the solution can be calculated by dividing the number of moles with the volume of the solution. The molality of the solution is calculated by dividing the number of moles of the solute with the mass of the solvent in kg.
Complete step by step answer:
Molarity: The molarity of the solution is defined as the number of moles of the solute present per liter. It is represented by the symbol, M.
\[Molarity=\frac{\text{Moles of the solute}}{\text{Volume of the solution}}\]
Moles of the solute can be calculated by:
\[Moles=\frac{\text{mass of the solute}}{\text{molar mass of the solute}}\]
Molality: The molality of a solution is defined as the number of moles of the solute dissolved in 1kg (1000 g) of the solvent. It is represented by the symbol, ‘m’.
\[Molality=\frac{\text{Moles of the solute}}{\text{Mass of the solvent in kg}}\]
Now, according to the question: the mole fraction of $C{{H}_{3}}OH$ in an aqueous solution is 0.02.
So, $0.02=\frac{x}{y+x}$
Where x = moles of $C{{H}_{3}}OH$ and y = moles of water.
Moles of water = $\frac{1000\text{ g}}{18}=55.55$
Hence,
$0.02=\frac{x}{55.55+x}$
$x-0.02x=55.55\text{ x 0}\text{.02}$
$\text{0}\text{.98}x=1.111$
$x=1.13\text{ moles}$
So, the moles of solute ($C{{H}_{3}}OH$ ) is 1.13 and mass of solvent is 1kg.
Therefore, the molality of the solution is $\frac{1.13}{1}=1.13\text{ m}$
Now, for molarity of the solution,
The moles of the solute ($C{{H}_{3}}OH$ ) is 1.13.
The volume of the solution can be calculated by dividing the total mass of the solution with the density. Given density = $0.994g/c{{m}^{3}}$
Total mass = molecular mass of $C{{H}_{3}}OH$ x moles of$C{{H}_{3}}OH$ + molecular mass of water x moles of water
Total mass = $32\text{ x 1}\text{.13 + 18 x 55}\text{.55 = 1036}\text{.06}$
Volume = $\frac{1036.06}{0.994}mL=\frac{1036.06}{994}L=1.04L$
Now, putting these in molarity equation,
Molarity = $\frac{1.13}{1.04}=1.08M$
Therefore, the molarity of the solution is 1.08 M and the molality of the solution is 1.13 m.
Note: The volume of the solution must be taken in liters only. The value of a mole fraction of water can directly be taken as 55.55 because the aqueous solution will have water as the solvent.
Complete step by step answer:
Molarity: The molarity of the solution is defined as the number of moles of the solute present per liter. It is represented by the symbol, M.
\[Molarity=\frac{\text{Moles of the solute}}{\text{Volume of the solution}}\]
Moles of the solute can be calculated by:
\[Moles=\frac{\text{mass of the solute}}{\text{molar mass of the solute}}\]
Molality: The molality of a solution is defined as the number of moles of the solute dissolved in 1kg (1000 g) of the solvent. It is represented by the symbol, ‘m’.
\[Molality=\frac{\text{Moles of the solute}}{\text{Mass of the solvent in kg}}\]
Now, according to the question: the mole fraction of $C{{H}_{3}}OH$ in an aqueous solution is 0.02.
So, $0.02=\frac{x}{y+x}$
Where x = moles of $C{{H}_{3}}OH$ and y = moles of water.
Moles of water = $\frac{1000\text{ g}}{18}=55.55$
Hence,
$0.02=\frac{x}{55.55+x}$
$x-0.02x=55.55\text{ x 0}\text{.02}$
$\text{0}\text{.98}x=1.111$
$x=1.13\text{ moles}$
So, the moles of solute ($C{{H}_{3}}OH$ ) is 1.13 and mass of solvent is 1kg.
Therefore, the molality of the solution is $\frac{1.13}{1}=1.13\text{ m}$
Now, for molarity of the solution,
The moles of the solute ($C{{H}_{3}}OH$ ) is 1.13.
The volume of the solution can be calculated by dividing the total mass of the solution with the density. Given density = $0.994g/c{{m}^{3}}$
Total mass = molecular mass of $C{{H}_{3}}OH$ x moles of$C{{H}_{3}}OH$ + molecular mass of water x moles of water
Total mass = $32\text{ x 1}\text{.13 + 18 x 55}\text{.55 = 1036}\text{.06}$
Volume = $\frac{1036.06}{0.994}mL=\frac{1036.06}{994}L=1.04L$
Now, putting these in molarity equation,
Molarity = $\frac{1.13}{1.04}=1.08M$
Therefore, the molarity of the solution is 1.08 M and the molality of the solution is 1.13 m.
Note: The volume of the solution must be taken in liters only. The value of a mole fraction of water can directly be taken as 55.55 because the aqueous solution will have water as the solvent.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths