
The molarity (M) of \[{\text{KMn}}{{\text{O}}_4}\] solution in aqueous acidic medium is :
A ) 0.2 M
B ) 0.02 M
C ) 0.4 M
D ) 0.04 M
Answer
572.7k+ views
Hint: In a redox reaction, n factor gives the change in the oxidation number of the species undergoing oxidation or reduction. The number of milliequivalents is equal to the product of molarity, volume and n factor. The number of milliequivalents of oxidant are equal to the number of milliequivalents of reductants.
Complete step by step answer:
Consider the titration reaction between \[{\text{100 mL KMn}}{{\text{O}}_4}\] and \[{\text{100 mL 0}}{\text{.1 M N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\] solution. The oxidation number of manganese decreases from +7 to +2. The n factor for manganese will be 5.
Let M be the molarity of \[{\text{KMn}}{{\text{O}}_4}\]
Volume of \[{\text{KMn}}{{\text{O}}_4}\] is \[100{\text{ }}mL\]
Calculate the milliequivalents of \[{\text{KMn}}{{\text{O}}_4}\]:
\[{\text{meq of KMn}}{{\text{O}}_4}{\text{ }} = {\text{ molarity }} \times {\text{ Volume }} \times {\text{ n factor}} \\
{\text{meq of KMn}}{{\text{O}}_4}{\text{ }} = {\text{ M }} \times {\text{ 100 }} \times {\text{ 5 }} \\
{\text{meq of KMn}}{{\text{O}}_4}{\text{ }} = {\text{ 500M}} \\
{\text{ }} \\\]
For \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\] consider the following half reaction
\[{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{ }} \to {\text{ }}\dfrac{1}{2}{\text{ }}{{\text{S}}_4}{\text{O}}_6^{2 - }{\text{ + }}{{\text{e}}^ - }{\text{ }}\]
The n factor for \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\] is 1.
The molarity of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\] is 0.1 M.
Volume of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\] is 100 mL
Calculate the milliequivalents of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\]:
\[{\text{meq of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}{\text{ }} = {\text{ molarity }} \times {\text{ Volume }} \times {\text{ n factor}} \\
{\text{meq of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}{\text{ }} = {\text{ 0}}{\text{.1 }} \times {\text{ 100 }} \times {\text{ 1 }} \\
{\text{meq of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}{\text{ }} = {\text{ 10}} \\\]
But the number of milliequivalents of \[{\text{KMn}}{{\text{O}}_4}\] is equal to the number of milliequivalents of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\].
\[{\text{meq of KMn}}{{\text{O}}_4}{\text{ }} = {\text{ meq of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3} \\
{\text{500M }} = {\text{ }}10{\text{ }} \\
{\text{M }} = {\text{ }}\dfrac{{10}}{{500}} \\
{\text{M}} = 0.02{\text{M}} \\\]
The molarity of \[{\text{KMn}}{{\text{O}}_4}\] solution is \[{\text{0}}{\text{.02 M}}\] .
Hence, the correct option is B ) \[{\text{0}}{\text{.02 M}}\].
Note: Take proper care while calculating the n factor of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\]. Do not write the half reaction as \[{\text{2 }}{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{ }} \to {\text{ }}{{\text{S}}_4}{\text{O}}_6^{2 - }{\text{ + 2 }}{{\text{e}}^ - }\]and say that n factor is 2. The half reaction is \[{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{ }} \to {\text{ }}\dfrac{1}{2}{\text{ }}{{\text{S}}_4}{\text{O}}_6^{2 - }{\text{ + }}{{\text{e}}^ - }{\text{ }}\]and the n factor is 1.
Complete step by step answer:
Consider the titration reaction between \[{\text{100 mL KMn}}{{\text{O}}_4}\] and \[{\text{100 mL 0}}{\text{.1 M N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\] solution. The oxidation number of manganese decreases from +7 to +2. The n factor for manganese will be 5.
Let M be the molarity of \[{\text{KMn}}{{\text{O}}_4}\]
Volume of \[{\text{KMn}}{{\text{O}}_4}\] is \[100{\text{ }}mL\]
Calculate the milliequivalents of \[{\text{KMn}}{{\text{O}}_4}\]:
\[{\text{meq of KMn}}{{\text{O}}_4}{\text{ }} = {\text{ molarity }} \times {\text{ Volume }} \times {\text{ n factor}} \\
{\text{meq of KMn}}{{\text{O}}_4}{\text{ }} = {\text{ M }} \times {\text{ 100 }} \times {\text{ 5 }} \\
{\text{meq of KMn}}{{\text{O}}_4}{\text{ }} = {\text{ 500M}} \\
{\text{ }} \\\]
For \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\] consider the following half reaction
\[{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{ }} \to {\text{ }}\dfrac{1}{2}{\text{ }}{{\text{S}}_4}{\text{O}}_6^{2 - }{\text{ + }}{{\text{e}}^ - }{\text{ }}\]
The n factor for \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\] is 1.
The molarity of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\] is 0.1 M.
Volume of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\] is 100 mL
Calculate the milliequivalents of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\]:
\[{\text{meq of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}{\text{ }} = {\text{ molarity }} \times {\text{ Volume }} \times {\text{ n factor}} \\
{\text{meq of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}{\text{ }} = {\text{ 0}}{\text{.1 }} \times {\text{ 100 }} \times {\text{ 1 }} \\
{\text{meq of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}{\text{ }} = {\text{ 10}} \\\]
But the number of milliequivalents of \[{\text{KMn}}{{\text{O}}_4}\] is equal to the number of milliequivalents of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\].
\[{\text{meq of KMn}}{{\text{O}}_4}{\text{ }} = {\text{ meq of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3} \\
{\text{500M }} = {\text{ }}10{\text{ }} \\
{\text{M }} = {\text{ }}\dfrac{{10}}{{500}} \\
{\text{M}} = 0.02{\text{M}} \\\]
The molarity of \[{\text{KMn}}{{\text{O}}_4}\] solution is \[{\text{0}}{\text{.02 M}}\] .
Hence, the correct option is B ) \[{\text{0}}{\text{.02 M}}\].
Note: Take proper care while calculating the n factor of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\]. Do not write the half reaction as \[{\text{2 }}{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{ }} \to {\text{ }}{{\text{S}}_4}{\text{O}}_6^{2 - }{\text{ + 2 }}{{\text{e}}^ - }\]and say that n factor is 2. The half reaction is \[{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{ }} \to {\text{ }}\dfrac{1}{2}{\text{ }}{{\text{S}}_4}{\text{O}}_6^{2 - }{\text{ + }}{{\text{e}}^ - }{\text{ }}\]and the n factor is 1.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

