
The molarity (M) of \[{\text{KMn}}{{\text{O}}_4}\] solution in aqueous acidic medium is :
A ) 0.2 M
B ) 0.02 M
C ) 0.4 M
D ) 0.04 M
Answer
583.8k+ views
Hint: In a redox reaction, n factor gives the change in the oxidation number of the species undergoing oxidation or reduction. The number of milliequivalents is equal to the product of molarity, volume and n factor. The number of milliequivalents of oxidant are equal to the number of milliequivalents of reductants.
Complete step by step answer:
Consider the titration reaction between \[{\text{100 mL KMn}}{{\text{O}}_4}\] and \[{\text{100 mL 0}}{\text{.1 M N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\] solution. The oxidation number of manganese decreases from +7 to +2. The n factor for manganese will be 5.
Let M be the molarity of \[{\text{KMn}}{{\text{O}}_4}\]
Volume of \[{\text{KMn}}{{\text{O}}_4}\] is \[100{\text{ }}mL\]
Calculate the milliequivalents of \[{\text{KMn}}{{\text{O}}_4}\]:
\[{\text{meq of KMn}}{{\text{O}}_4}{\text{ }} = {\text{ molarity }} \times {\text{ Volume }} \times {\text{ n factor}} \\
{\text{meq of KMn}}{{\text{O}}_4}{\text{ }} = {\text{ M }} \times {\text{ 100 }} \times {\text{ 5 }} \\
{\text{meq of KMn}}{{\text{O}}_4}{\text{ }} = {\text{ 500M}} \\
{\text{ }} \\\]
For \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\] consider the following half reaction
\[{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{ }} \to {\text{ }}\dfrac{1}{2}{\text{ }}{{\text{S}}_4}{\text{O}}_6^{2 - }{\text{ + }}{{\text{e}}^ - }{\text{ }}\]
The n factor for \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\] is 1.
The molarity of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\] is 0.1 M.
Volume of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\] is 100 mL
Calculate the milliequivalents of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\]:
\[{\text{meq of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}{\text{ }} = {\text{ molarity }} \times {\text{ Volume }} \times {\text{ n factor}} \\
{\text{meq of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}{\text{ }} = {\text{ 0}}{\text{.1 }} \times {\text{ 100 }} \times {\text{ 1 }} \\
{\text{meq of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}{\text{ }} = {\text{ 10}} \\\]
But the number of milliequivalents of \[{\text{KMn}}{{\text{O}}_4}\] is equal to the number of milliequivalents of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\].
\[{\text{meq of KMn}}{{\text{O}}_4}{\text{ }} = {\text{ meq of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3} \\
{\text{500M }} = {\text{ }}10{\text{ }} \\
{\text{M }} = {\text{ }}\dfrac{{10}}{{500}} \\
{\text{M}} = 0.02{\text{M}} \\\]
The molarity of \[{\text{KMn}}{{\text{O}}_4}\] solution is \[{\text{0}}{\text{.02 M}}\] .
Hence, the correct option is B ) \[{\text{0}}{\text{.02 M}}\].
Note: Take proper care while calculating the n factor of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\]. Do not write the half reaction as \[{\text{2 }}{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{ }} \to {\text{ }}{{\text{S}}_4}{\text{O}}_6^{2 - }{\text{ + 2 }}{{\text{e}}^ - }\]and say that n factor is 2. The half reaction is \[{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{ }} \to {\text{ }}\dfrac{1}{2}{\text{ }}{{\text{S}}_4}{\text{O}}_6^{2 - }{\text{ + }}{{\text{e}}^ - }{\text{ }}\]and the n factor is 1.
Complete step by step answer:
Consider the titration reaction between \[{\text{100 mL KMn}}{{\text{O}}_4}\] and \[{\text{100 mL 0}}{\text{.1 M N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\] solution. The oxidation number of manganese decreases from +7 to +2. The n factor for manganese will be 5.
Let M be the molarity of \[{\text{KMn}}{{\text{O}}_4}\]
Volume of \[{\text{KMn}}{{\text{O}}_4}\] is \[100{\text{ }}mL\]
Calculate the milliequivalents of \[{\text{KMn}}{{\text{O}}_4}\]:
\[{\text{meq of KMn}}{{\text{O}}_4}{\text{ }} = {\text{ molarity }} \times {\text{ Volume }} \times {\text{ n factor}} \\
{\text{meq of KMn}}{{\text{O}}_4}{\text{ }} = {\text{ M }} \times {\text{ 100 }} \times {\text{ 5 }} \\
{\text{meq of KMn}}{{\text{O}}_4}{\text{ }} = {\text{ 500M}} \\
{\text{ }} \\\]
For \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\] consider the following half reaction
\[{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{ }} \to {\text{ }}\dfrac{1}{2}{\text{ }}{{\text{S}}_4}{\text{O}}_6^{2 - }{\text{ + }}{{\text{e}}^ - }{\text{ }}\]
The n factor for \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\] is 1.
The molarity of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\] is 0.1 M.
Volume of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\] is 100 mL
Calculate the milliequivalents of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\]:
\[{\text{meq of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}{\text{ }} = {\text{ molarity }} \times {\text{ Volume }} \times {\text{ n factor}} \\
{\text{meq of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}{\text{ }} = {\text{ 0}}{\text{.1 }} \times {\text{ 100 }} \times {\text{ 1 }} \\
{\text{meq of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}{\text{ }} = {\text{ 10}} \\\]
But the number of milliequivalents of \[{\text{KMn}}{{\text{O}}_4}\] is equal to the number of milliequivalents of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\].
\[{\text{meq of KMn}}{{\text{O}}_4}{\text{ }} = {\text{ meq of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3} \\
{\text{500M }} = {\text{ }}10{\text{ }} \\
{\text{M }} = {\text{ }}\dfrac{{10}}{{500}} \\
{\text{M}} = 0.02{\text{M}} \\\]
The molarity of \[{\text{KMn}}{{\text{O}}_4}\] solution is \[{\text{0}}{\text{.02 M}}\] .
Hence, the correct option is B ) \[{\text{0}}{\text{.02 M}}\].
Note: Take proper care while calculating the n factor of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_2}{{\text{O}}_3}\]. Do not write the half reaction as \[{\text{2 }}{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{ }} \to {\text{ }}{{\text{S}}_4}{\text{O}}_6^{2 - }{\text{ + 2 }}{{\text{e}}^ - }\]and say that n factor is 2. The half reaction is \[{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{ }} \to {\text{ }}\dfrac{1}{2}{\text{ }}{{\text{S}}_4}{\text{O}}_6^{2 - }{\text{ + }}{{\text{e}}^ - }{\text{ }}\]and the n factor is 1.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

