
The maximum intensity in Young’s double slit experiment is ${I_0}$. Distance between the slits is $d = 5\lambda $, where $\lambda $ is the wavelength of monochromatic light used in the experiment. What will be the intensity of light in front of one of the slits on a screen at a distance$D = 10d$?
A. ${I_0}$
B. ${I_0}/4$
C. $\dfrac{3}{4}{I_0}$
D. ${I_0}/2$
Answer
575.1k+ views
Hint:The intensity of the light in the Young’s double slit experiment varies with the distance between the slits, path difference and distance of the screen from the source of the light.
Complete Step by Step Answer:
The distance between the slits is $d = 5\lambda $, wavelength of monochromatic light is $\lambda $and distance of one of the slits from the screen is $D = 10d$.
Write the equation to calculate the distance of the source from the screen.
$y = \dfrac{d}{2}$
Substitute $d$ as $5\lambda $ in the above equation.
$y = \dfrac{{5\lambda }}{2}$
Write the equation to calculate the path difference.
$\Delta x = \dfrac{{yd}}{D}$
Substitute $y$ as $\dfrac{{5\lambda }}{2}$, $D$ as $10d$ and $d$ as $5\lambda $ in the above equation.
$\begin{array}{l}
\Delta x = \left( {\dfrac{{5\lambda }}{2}} \right)\left( {\dfrac{{5\lambda }}{{10\left( {5\lambda } \right)}}} \right)\\
= \dfrac{\lambda }{4}
\end{array}$
Write the equation to calculate the path difference.
$\phi = \dfrac{{2\pi }}{\lambda }\left( {\Delta x} \right)$
Substitute $\Delta x$ as $\dfrac{\lambda }{4}$in the above equation.
\[\begin{array}{l}
\phi = \dfrac{{2\pi }}{\lambda }\left( {\dfrac{\lambda }{4}} \right)\\
= \dfrac{\pi }{2}
\end{array}\]
Write the equation to calculate the intensity of light in front of one of the slit.
$I = {I_0}{\cos ^2}\left( {\dfrac{\phi }{2}} \right)$
Substitute $\phi $ as \[\dfrac{\pi }{2}\] in the above equation.
$\begin{array}{l}
I = {I_0}{\cos ^2}{\left( {\dfrac{{\left( {\dfrac{\pi }{2}} \right)}}{2}} \right)^2}\\
= {I_0}{\cos ^2}\left( {\dfrac{\pi }{4}} \right)\\
= {I_0}{\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2}\\
= \dfrac{{{I_0}}}{2}
\end{array}$
Therefore, the intensity of light in front of one of the slits is $\dfrac{{{I_0}}}{2}$ and the option (D) is correct.
Note:Make sure to calculate the path difference, phase difference of the light and distinguish between the distance between the slit and distance of the source from the slit.
Complete Step by Step Answer:
The distance between the slits is $d = 5\lambda $, wavelength of monochromatic light is $\lambda $and distance of one of the slits from the screen is $D = 10d$.
Write the equation to calculate the distance of the source from the screen.
$y = \dfrac{d}{2}$
Substitute $d$ as $5\lambda $ in the above equation.
$y = \dfrac{{5\lambda }}{2}$
Write the equation to calculate the path difference.
$\Delta x = \dfrac{{yd}}{D}$
Substitute $y$ as $\dfrac{{5\lambda }}{2}$, $D$ as $10d$ and $d$ as $5\lambda $ in the above equation.
$\begin{array}{l}
\Delta x = \left( {\dfrac{{5\lambda }}{2}} \right)\left( {\dfrac{{5\lambda }}{{10\left( {5\lambda } \right)}}} \right)\\
= \dfrac{\lambda }{4}
\end{array}$
Write the equation to calculate the path difference.
$\phi = \dfrac{{2\pi }}{\lambda }\left( {\Delta x} \right)$
Substitute $\Delta x$ as $\dfrac{\lambda }{4}$in the above equation.
\[\begin{array}{l}
\phi = \dfrac{{2\pi }}{\lambda }\left( {\dfrac{\lambda }{4}} \right)\\
= \dfrac{\pi }{2}
\end{array}\]
Write the equation to calculate the intensity of light in front of one of the slit.
$I = {I_0}{\cos ^2}\left( {\dfrac{\phi }{2}} \right)$
Substitute $\phi $ as \[\dfrac{\pi }{2}\] in the above equation.
$\begin{array}{l}
I = {I_0}{\cos ^2}{\left( {\dfrac{{\left( {\dfrac{\pi }{2}} \right)}}{2}} \right)^2}\\
= {I_0}{\cos ^2}\left( {\dfrac{\pi }{4}} \right)\\
= {I_0}{\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2}\\
= \dfrac{{{I_0}}}{2}
\end{array}$
Therefore, the intensity of light in front of one of the slits is $\dfrac{{{I_0}}}{2}$ and the option (D) is correct.
Note:Make sure to calculate the path difference, phase difference of the light and distinguish between the distance between the slit and distance of the source from the slit.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is virtual and erect image ?

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Write any three uses of polaroids class 12 physics CBSE

