
The line of intersection of the planes $\overset{\to }{\mathop{r}}\,\cdot \left( 3\widehat{i}-\widehat{j}+\widehat{k} \right)=1\text{ and }\overset{\to }{\mathop{r}}\,\cdot \left( \widehat{i}+4\widehat{j}-2\widehat{k} \right)=2$ is\[\begin{align}
& \text{A) }\dfrac{x-\dfrac{6}{13}}{2}=\dfrac{y-\dfrac{5}{13}}{-7}=\dfrac{z}{-13} \\
& \text{B) }\dfrac{x-\dfrac{6}{13}}{2}=\dfrac{y-\dfrac{5}{13}}{7}=\dfrac{z}{-13} \\
& \text{C) }\dfrac{x-\dfrac{4}{7}}{-2}=\dfrac{y}{7}=\dfrac{z-\dfrac{5}{7}}{-13} \\
& \text{D) }\dfrac{x-\dfrac{4}{7}}{2}=\dfrac{y}{-7}=\dfrac{z+\dfrac{5}{7}}{13} \\
\end{align}\]
Answer
509.7k+ views
Hint: In this to find the common intersecting line of two planes. First we convert the vector form of planes into Cartesian form. After converting into Cartesian form we will substitute one of the coordinates of the three dimensional system as some constant to convert it into two dimension system. By obtaining an equation of planes in a two dimensional system we can this equation simultaneously and obtain the parametric form of equation of lines.
Complete step by step answer:
The equation planes in vector form are $\overset{\to }{\mathop{r}}\,\cdot \left( 3\widehat{i}-\widehat{j}+\widehat{k} \right)=1\text{ and }\overset{\to }{\mathop{r}}\,\cdot \left( \widehat{i}+4\widehat{j}-2\widehat{k} \right)=2$
The direction cosines of the plane $\overset{\to }{\mathop{r}}\,\cdot \left( 3\widehat{i}-\widehat{j}+\widehat{k} \right)=1$ are (3, -1, 1) and perpendicular distance from origin is 1. Therefore the Cartesian equation of planes $\overset{\to }{\mathop{r}}\,\cdot \left( 3\widehat{i}-\widehat{j}+\widehat{k} \right)=1$ is
3x – y + z = 1 …..(1)
The direction cosines of the plane $\overset{\to }{\mathop{r}}\,\cdot \left( \widehat{i}+4\widehat{j}-2\widehat{k} \right)=2$ are (1, 4, -2) and perpendicular distance from origin is 2. Therefore the Cartesian equation of planes $\overset{\to }{\mathop{r}}\,\cdot \left( \widehat{i}+4\widehat{j}-2\widehat{k} \right)=2$ is
x + 4y - 2z = 2 …..(2)
Put z = t in equation (1) and equation (2), we get
3x – y + t = 1
x + 4y - 2z = 2
$\Rightarrow $3x – y = 1 - t …..(3)
And x + 4y = 2 + 2t…..(4)
Multiplying equation (4) by 3, we get
3x + 12y = 6 + 6t…..(5)
Subtracting equation (3) from equation (5), we get
13y = 5 + 7t
$y=\dfrac{\text{ }5\text{ }+\text{ }7t}{13}$
Using the value of y in equation (3), we get
$3x\text{ }\text{- }\dfrac{\text{ }5\text{ }+\text{ }7t}{13}\text{ }=\text{ }1\text{ }-\text{ }t$
By adding $\dfrac{\text{ }5\text{ }+\text{ }7t}{13}$ on both sides, we get
$3x\text{ }\text{ -}\dfrac{\text{ }5\text{ }+\text{ }7t}{13}\text{+}\dfrac{\text{ }5\text{ }+\text{ }7t}{13}\text{ }=\text{ }1\text{ }-\text{ }t+\dfrac{\text{ }5\text{ }+\text{ }7t}{13}$
$3x\text{ }=\text{ }1\text{ }-\text{ }t+\dfrac{\text{ }5\text{ }+\text{ }7t}{13}$
By cross multiplication, we get
$3x\text{ }=\dfrac{\text{13-13t+ }5\text{ }+\text{ }7t}{13}$
$3x\text{ }=\dfrac{\text{1}8-6t}{13}$
By dividing 3 on both sides, we get
$x\text{ }=\dfrac{6-2t}{13}$
Hence parametric equations of line are
$x\text{ }=\dfrac{6-2t}{13},\text{ }y=\dfrac{\text{ }5\text{ }+\text{ }7t}{13},\text{ }z=t$
By eliminating t we get the cartesian form of the line as follows
\[\dfrac{x-\dfrac{6}{13}}{2}=\dfrac{y-\dfrac{5}{13}}{7}=\dfrac{z}{-13}\] .
So, the correct answer is “Option A”.
Note: The different forms of equation of line is given below,\\
1) Vector form: let \[\overset{\to }{\mathop{a}}\,\] be the position vector of point A with respect to origin. Let L be a line which passes through point A and is parallel to a given vector\[\overset{\to }{\mathop{b}}\,\]. Let \[\overset{\to }{\mathop{r}}\,\] be the position vector of the arbitrary point P on the line. Then the vector form of equation of line is
\[\overset{\to }{\mathop{r}}\,=\overset{\to }{\mathop{a}}\,+\lambda \overset{\to }{\mathop{b}}\,\]
2) Let the coordinates of given point A be \[\left( {{x}_{1}},\text{ }{{y}_{1}},\text{ }{{z}_{2}} \right)\]and the direction ratio of the lines be a, b, c. Then the parametric equation of line is
\[x\text{ }=\text{ }{{x}_{1}}+\text{ }ka,\text{ }y\text{ }=\text{ }{{y}_{1}}+\text{ }kb\text{ }and\text{ }z\text{ }=\text{ }{{z}_{2}}+\text{ }kc.\]
The by eliminating k, we get cartesian form of line
\[\dfrac{x-{{x}_{1}}}{a}=\dfrac{y-{{y}_{1}}}{b}=\dfrac{z-{{z}_{1}}}{c}\]
Complete step by step answer:
The equation planes in vector form are $\overset{\to }{\mathop{r}}\,\cdot \left( 3\widehat{i}-\widehat{j}+\widehat{k} \right)=1\text{ and }\overset{\to }{\mathop{r}}\,\cdot \left( \widehat{i}+4\widehat{j}-2\widehat{k} \right)=2$
The direction cosines of the plane $\overset{\to }{\mathop{r}}\,\cdot \left( 3\widehat{i}-\widehat{j}+\widehat{k} \right)=1$ are (3, -1, 1) and perpendicular distance from origin is 1. Therefore the Cartesian equation of planes $\overset{\to }{\mathop{r}}\,\cdot \left( 3\widehat{i}-\widehat{j}+\widehat{k} \right)=1$ is
3x – y + z = 1 …..(1)
The direction cosines of the plane $\overset{\to }{\mathop{r}}\,\cdot \left( \widehat{i}+4\widehat{j}-2\widehat{k} \right)=2$ are (1, 4, -2) and perpendicular distance from origin is 2. Therefore the Cartesian equation of planes $\overset{\to }{\mathop{r}}\,\cdot \left( \widehat{i}+4\widehat{j}-2\widehat{k} \right)=2$ is
x + 4y - 2z = 2 …..(2)
Put z = t in equation (1) and equation (2), we get
3x – y + t = 1
x + 4y - 2z = 2
$\Rightarrow $3x – y = 1 - t …..(3)
And x + 4y = 2 + 2t…..(4)
Multiplying equation (4) by 3, we get
3x + 12y = 6 + 6t…..(5)
Subtracting equation (3) from equation (5), we get
13y = 5 + 7t
$y=\dfrac{\text{ }5\text{ }+\text{ }7t}{13}$
Using the value of y in equation (3), we get
$3x\text{ }\text{- }\dfrac{\text{ }5\text{ }+\text{ }7t}{13}\text{ }=\text{ }1\text{ }-\text{ }t$
By adding $\dfrac{\text{ }5\text{ }+\text{ }7t}{13}$ on both sides, we get
$3x\text{ }\text{ -}\dfrac{\text{ }5\text{ }+\text{ }7t}{13}\text{+}\dfrac{\text{ }5\text{ }+\text{ }7t}{13}\text{ }=\text{ }1\text{ }-\text{ }t+\dfrac{\text{ }5\text{ }+\text{ }7t}{13}$
$3x\text{ }=\text{ }1\text{ }-\text{ }t+\dfrac{\text{ }5\text{ }+\text{ }7t}{13}$
By cross multiplication, we get
$3x\text{ }=\dfrac{\text{13-13t+ }5\text{ }+\text{ }7t}{13}$
$3x\text{ }=\dfrac{\text{1}8-6t}{13}$
By dividing 3 on both sides, we get
$x\text{ }=\dfrac{6-2t}{13}$
Hence parametric equations of line are
$x\text{ }=\dfrac{6-2t}{13},\text{ }y=\dfrac{\text{ }5\text{ }+\text{ }7t}{13},\text{ }z=t$
By eliminating t we get the cartesian form of the line as follows
\[\dfrac{x-\dfrac{6}{13}}{2}=\dfrac{y-\dfrac{5}{13}}{7}=\dfrac{z}{-13}\] .
So, the correct answer is “Option A”.
Note: The different forms of equation of line is given below,\\
1) Vector form: let \[\overset{\to }{\mathop{a}}\,\] be the position vector of point A with respect to origin. Let L be a line which passes through point A and is parallel to a given vector\[\overset{\to }{\mathop{b}}\,\]. Let \[\overset{\to }{\mathop{r}}\,\] be the position vector of the arbitrary point P on the line. Then the vector form of equation of line is
\[\overset{\to }{\mathop{r}}\,=\overset{\to }{\mathop{a}}\,+\lambda \overset{\to }{\mathop{b}}\,\]
2) Let the coordinates of given point A be \[\left( {{x}_{1}},\text{ }{{y}_{1}},\text{ }{{z}_{2}} \right)\]and the direction ratio of the lines be a, b, c. Then the parametric equation of line is
\[x\text{ }=\text{ }{{x}_{1}}+\text{ }ka,\text{ }y\text{ }=\text{ }{{y}_{1}}+\text{ }kb\text{ }and\text{ }z\text{ }=\text{ }{{z}_{2}}+\text{ }kc.\]
The by eliminating k, we get cartesian form of line
\[\dfrac{x-{{x}_{1}}}{a}=\dfrac{y-{{y}_{1}}}{b}=\dfrac{z-{{z}_{1}}}{c}\]
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
